Variación espacio-temporal de los procesos hidrológicos del suelo en viñedos con elevadas pendientes (Valle del Ruwer-Mosela, Alemania)

  1. J. Rodrigo Comino 12
  2. M. Seeger 2
  3. J. M. Senciales González 1
  4. J.D. Ruiz Sinoga 1
  5. J. B. Ries 2
  1. 1 Universidad de Málaga
    info

    Universidad de Málaga

    Málaga, España

    ROR https://ror.org/036b2ww28

  2. 2 University of Trier
    info

    University of Trier

    Tréveris, Alemania

    ROR https://ror.org/02778hg05

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Vicente Serrano, Sergio Martín (coord.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2016

Volumen: 42

Número: 1

Páginas: 281-306

Tipo: Artículo

DOI: 10.18172/CIG.2934 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

Los suelos de los viñedos del valle del Ruwer-Mosela (Alemania) cultivados en elevadas pendientes muestran una alta variabilidad espacio-temporal en su dinámica hidrológica. A través del uso del permeámetro de Guelph se realizaron un total de cuarenta y dos experimentos en viñedos jóvenes y viejos para medir las tasas de infiltración, la conductividad hidráulica y el potencial del flujo matricial. Los ensayos fueron realizados antes de la vendimia coincidiendo con la primavera y el verano (con el suelo relativamente seco y sin actividad reciente de pisadas y maquinaria), y tras la cosecha en otoño (con un manto edáfico húmedo, con señales de compactación y un menor contenido de materia orgánica). En general, todos los parámetros analizados fueron mucho más elevados en los viñedos jóvenes que en los viejos y aumentaron tras la vendimia. En las viñas jóvenes los tres parámetros analizados mostraron sus mayores valores en la parte media (398,5  mm h-1 de tasa de infiltración, 89,2 mm h-1 de conductividad hidráulica y 62,8 mm2 h-1 de potencial del flujo matricial). Por su parte, en las viñas viejas se observó un descenso de la infiltración desde la parte superior a la inferior de la parcela (desde 42,5 a 16,8 mm h-1). Los resultados de la conductividad hidráulica y el potencial del flujo matricial marcaron también una dinámica hidrológica parecida: descenso de los parámetros conforme se desciende en la parcela (13,2 a 5,4 mm h-1 y desde 5,5 a 2,5 mm2 h-1). Por ultimo, se observó cómo el factor que mayor coeficiente de determinación obtuvo con estas dinámicas hidrológicas fue la variación del contenido de agua en el suelo y las prácticas agrícolas.

Referencias bibliográficas

  • Archer, N.A.L., Bonell, M., Coles, N., MacDonald, A.M., Auton, C.A., Stevenson, R. 2013. Soil characteristics and landcover relationships on soil hydraulic conductivity at a hillslope scale: A view towards local flood management. Journal of Hydrology 497, 208–222. Doi: 10.1016/j.jhydrol.2013.05.043
  • Arnáez, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research 93, 324–334. Doi: 10.1016/j.still.2006.05.013
  • Bagarello, V., 1997. Influence of well preparation on field-saturated hydraulic conductivity measured with the Guelph Permeameter. Geoderma 80, 169–180. Doi: 10.1016/S0016-7061(97)00051-7
  • Bagarello, V., Castellini, M., Di Prima, S., Iovino, M. 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 213, 492–501. Doi: 10.1016/j.geoderma.2013.08.032
  • Biddoccu, M., Ferraris, S., Cavallo, E., Opsi, F., Previati, M., Canone, D. 2013. Hillslope Vineyard Rainfall-Runoff Measurements in Relation to Soil Infiltration and Water Content. Procedia Environmental Sciences 19, 351–360. Doi: 10.1016/j.proenv.2013.06.040
  • Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J.Y., Asseline, J., Leprun, J.C., Arshad, M.A., Roose, E. 2009. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil & Tillage Research 106, 124–136. Doi: 10.1016/j.still.2009.04.010
  • Bodner, G., Scholl, P., Loiskandl, W., Kaul, H.P. 2013. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma 204-205, 120–129. Doi: 10.1016/j.geoderma.2013.04.015
  • Bruggisser, O.T., Schmidt-Entling, M.H., Bacher, S. 2010. Effects of vineyard management on biodiversity at three trophic levels. Biological Conservation 143, 1521–1528. Doi: 10.1016/j.biocon.2010.03.034
  • Cadot, Y., Caillé, S., Thiollet-Scholtus, M., Samson, A., Barbeau, G., Cheynier, V. 2012. Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Quality and Preference 24, 48–58. Doi: 10.1016/j.foodqual.2011.08.012
  • Casalí, J., Giménez, R., De Santisteban, L., Álvarez-Mozos, J., Mena, J., Del Valle de Lersundi, J. 2009. Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks. Catena 78, 12–19. Doi: 10.1016/j.catena.2009.02.015
  • Cerdà, A., 1997. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil Research 11, 163–176. Doi: 10.1080/15324989709381469
  • Chevigny, E., Quiquerez, A., Petit, C., Curmi, P. 2014. Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. Catena 121, 354–364. Doi: 10.1016/j.catena.2014.05.022
  • Corbane, C., Jacob, F., Raclot, D., Albergel, J., Andrieux, P. 2012. Multitemporal analysis of hydrological soil surface characteristics using aerial photos: A case study on a Mediterranean vineyard. Int. J. Appl. Earth Obs. Geoinformation 18, 356–367. Doi: 10.1016/j.jag.2012.03.009
  • Costantini, E.A.C., Agnelli, A.E., Fabiani, A., Gagnarli, E., Mocali, S., Priori, S., Simoni, S., Valboa, G. 2015. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming. SOIL 1, 443–457. Doi: 10.5194/soil-1-443-2015
  • Davies, B.E. 1974. Loss-on-Ignition as an Estimate of Soil Organic Matter. Soil Science Society of America Journal 38. Doi: 10.2136/sssaj1974.03615995003800010046x
  • De Baets, S., Poesen, J., Meersmans, J., Serlet, L. 2011. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 85, 237–244. Doi: 10.1016/j.catena.2011.01.009
  • Elrick, D.E., Reynolds, W.D. 1992. Methods for analyzing constant-head well Permeameter data. Soil Science Society of America Journal 56, 320–323. Doi: 10.2136/sssaj1992.03615995005600010052x
  • Fischer, U., Roth, D., Christmann, M. 1999. The impact of geographic origin, vintage and wine estate on sensory properties of Vitis vinifera cv. Riesling wines. Food Quality and Preference 10, 281–288. Doi: 10.1016/S0950-3293(99)00008-7
  • Follain, S., Ciampalini, R., Crabit, A., Coulouma, G., Garnier, F. 2012. Effects of redistribution processes on rock fragment variability within a vineyard topsoil in Mediterranean France. Geomorphology 175–176, 45–53. Doi: 10.1016/j.geomorph.2012.06.017
  • Galati, A., Gristina, L., Crescimanno, M., Barone, E., Novara, A. 2015. Towards More Efficient Incentives for Agri-environment Measures in Degraded and Eroded Vineyards. Land Degradation & Development 26, 557–564. Doi: 10.1002/ldr.2389
  • Gruber, B., Kosegarten, H., 2002. Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. Journal of Plant Nutrition and Soil Science 165, 111–117. Doi: 10.1002/1522-2624(200202)165:1<111::AID-JPLN111>3.0.CO;2-B
  • Gupta, R.K., Rudra, R.P., Dickinson, W.T., Patni, N.K., Wall, G.J. 1993. Comparison of saturated hydraulic conductivity measured by various field methods. Transactions of the ASAE 36, 51–55. Doi: 10.13031/2013.28313
  • Gupta, R.K., Rudra, R.P., Parkin, G. 2006. Analysis of spatial variability of hydraulic conductivity at field scale. Canadian Biosystems Engineering 48, 1.55–1.62.
  • Gwenzi, W., Hinz, C., Holmes, K., Phillips, I.R., Mullins, I.J. 2011. Field-scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem. Geoderma 166, 43–56. Doi: 10.1016/j.geoderma.2011.06.010
  • Hewlett, J.D., Hibbert, A.R. 1967. Factors affecting the response of small watersheds to precipitation in humid areas. En: Sopper, W.E. y Lull, H.W., (eds.), Classics in physical geography revisited. New York, Pergamon Press For. Hydrol., pp. 275–290.
  • Huang, M., Rodger, H., Barbour, S.L. 2014. An evaluation of air permeability measurements to characterize the saturated hydraulic conductivity of soil reclamation covers. Canadian Journal of Soil Science 95, 15–26. Doi: 10.4141/cjss-2014-072
  • Huang, M., Zettl, J.D., Lee Barbour, S., Pratt, D. 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma 262, 285–293. Doi: 10.1016/j.geoderma.2015.08.014
  • Imeson, A.C., Lavee, H., 1998. Soil erosion and climate change: the transect approach and the influence of scale. Geomorphology 23, 219–227. Doi: 10.1016/S0169-555X(98)00005-1
  • IUSS Working Group WRB 2014. World Reference Base for Soil Resources 2014. World Soil Resources Report. FAO, Roma.
  • IUSS Working Group WRB 2007. Land Evaluation. Towards a revised framework. 2nd ed., Land and Water discussion paper, FAO, Roma.
  • IUSS Working Group WRB 2006. Guidelines for constructing smallscale map legends using the WRB. 2nd ed., World Soil Resources. FAO, Roma.
  • Jačka, L., Pavlásek, J., Kuráž, V., Pech, P. 2014. A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma 219–220, 82–88. Doi: 10.1016/j.geoderma.2013.12.027
  • Jackson, R.S., 2014. Wine science. Principles and Applications. Fourth Edition, Elsevier, London, 984 pp.
  • Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A. 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 204–205, 43–58. Doi: 10.1016/j.geoderma.2013.03.024
  • Kodešová, R., Šimůnek, J., Nikodem, A., Jirků, V. 2010. Estimation of the Dual-Permeability Model Parameters using Tension Disk Infiltrometer and Guelph Permeameter. Vadose Zone Journal 9. Doi: 10.2136/vzj2009.0069
  • Köpppen, W., Geiger, R. 1954. Klima der Erde. Justus Perthes Ed., Darmstadt.
  • Kosmas, C., Danalatos, N., Cammeraat, L.H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J.M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai, D., Vacca, A. 1997. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29, 45–59. Doi: 10.1016/S0341-8162(96)00062-8
  • Kumar, S., Sekhar, M., Reddy, D.V., Mohan Kumar, M.S. 2010. Estimation of soil hydraulic properties and their uncertainty: comparison between laboratory and field experiment. Hydrological Processes 24, 3426–3435. Doi: 10.1002/hyp.7775
  • Leonard, J., Andrieux, P. 1998. Infiltration characteristics of soils in Mediterranean vineyards in Southern France. Catena 32, 209–223. Doi: 10.1016/S0341-8162(98)00049-6
  • Lesch, S.M., Corwin, D.L. 2003. Using the dual-pathway parallel conductance model to determine how different soil properties influence conductivity survey data. Agronomy Journal 95, 365–379. Doi: 10.2134/agronj2003.3650
  • Lieskovský, J., Kenderessy, P. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degradation & Development 25, 288–296. Doi: 10.1002/ldr.2162
  • Likar, M., Vogel-Mikuš, K., Potisek, M., Hančević, K., Radić, T., Nečemer, M., Regvar, M. 2015. Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment 505, 724–731. Doi: 10.1016/j.scitotenv.2014.10.057
  • López-Piñeiro, A., Muñoz, A., Zamora, E., Ramírez, M. 2013. Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil & Tillage Research 126, 119–126. Doi: 10.1016/j.still.2012.09.007
  • MacDonald, A.M., Maurice, L., Dobbs, M.R., Reeves, H.J., Auton, C.A. 2012. Relating in situ hydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment. Journal of Hydrology 434–435, 130–141. Doi: 10.1016/j.jhydrol.2012.01.018
  • Martínez-Casasnovas, J.A., Ramos, M.C., García-Hernández, D. 2009. Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surface Processes and Landforms 34, 1927–1937. Doi: 10.1002/esp.1870
  • Martínez-Murillo, J.F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 106, 101–112. Doi: 10.1016/j.catena.2012.06.001
  • Martínez-Murillo, J.F., Ruiz-Sinoga, J.D. 2003. Incidencia de algunas propiedades físicas de suelos en su respuesta hidrológica ante diferentes usos bajo condiciones mediterráneas (Montes de Málaga). Edafología 10, 57–62.
  • Morvan, X., Naisse, C., Malam Issa, O., Desprats, J.F., Combaud, A., Cerdan, O. 2014. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use and Management 30, 372–381. Doi: 10.1111/sum.12129
  • Nasri, B., Fouché, O., Torri, D. 2015. Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 131, 99–108. Doi: 10.1016/j.catena.2015.03.018
  • Novara, A., Gristina, L., Guaitoli, F., Santoro, A., Cerdà, A. 2013. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 4, 255–262. Doi: 10.5194/se-4-255-2013
  • Novara, A., Gristina, L., Saladino, S.S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research 117, 140–147. Doi: 10.1016/j.still.2011.09.007
  • Ortigosa Izquierdo, L.M., Lasanta Martínez, T. 1984. El papel de la escorrentía en la organización textural de suelos cultivados en pendiente: modelos en viñedos de La Rioja. Cuadernos de Investigación Geográfica 9, 99–111.
  • Paroissien, J.B., Lagacherie, P., Le Bissonnais, Y. 2010. A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing–burying measurements. Catena 82, 159–168. Doi: 10.1016/j.catena.2010.06.002
  • Peter, K.D., Ries, J.B. 2013. Infiltration rates affected by land levelling measures in the Souss valley, South Morocco. Zeitschrift für Geomorphologie 57, 59–72.
  • Poesen, J., van Wesemael, B., Govers, G., Martínez-Fernandez, J., Desmet, P., Vandaele, K., Quine, T., Degraer, G. 1997. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197.
  • Porta, J., López-Acevedo, M., Poch, R. 2014. Edafología: uso y protección de suelos. Tercera ed., Mundiprensa, Madrid.
  • Price, K., Jackson, C.R., Parker, A.J. 2010. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology 383, 256–268. Doi: 10.1016/j.jhydrol.2009.12.041
  • Prosdocimi, M., Cerdà, A., Tarolli, P. 2016a. Soil water erosion on Mediterranean vineyards: A review. Catena 141, 1–21. Doi: 10.1016/j.catena.2016.02.010
  • Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016b. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547, 323–330. Doi: 10.1016/j.scitotenv.2015.12.076
  • Quiquerez, A., Chevigny, E., Allemand, P., Curmi, P., Petit, C., Grandjean, P. 2014. Assessing the impact of soil surface characteristics on vineyard erosion from very high spatial resolution aerial images (Côte de Beaune, Burgundy, France). Catena 116, 163–172. Doi: 10.1016/j.catena.2013.12.002
  • Ramos, M.C., Benito, C., Martínez-Casasnovas, J.A., 2015. Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agriculture, Ecosystems, Environment 213, 194 – 208. Doi :http://dx.doi.org/10.1016/j.agee.2015.08.004
  • Ramos, M.C., Martínez-Casasnovas, J.A. 2006. Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. Journal of Hydrology 321, 131–146. Doi: 10.1016/j.jhydrol.2005.07.055
  • Ramos, M.C., Nacci, S., Pla, I. 2000. Soil sealing and its influence on erosion rates for some soils in the Mediterranean area. Soil Science 165, 398–403.
  • Resolution OIV/VITI 333/2010, 2010. Definition of vitivinicultural“Terroir”. T. Asamblea General del OIV, Tbilisi, Georgia.
  • Reynolds, W.D. 1986. The Guelph Permeameter method for in situ measurement of field-saturated hydraulic conductivity and matric flux potential. Unpublished PhD, Guelph University, Guelph, Ontario, Canadá.
  • Reynolds, W.D., Elrick, D.E. 2002. Constant head well permeameter (vadose zone). In: J.H. Dane, G.C. Topp (Eds.), Methods of Soil Analysis, Physical Methods. Soil Science Society of America, Inc., Madison, WI (USA), pp. 844–858.
  • Reynolds, W.D., Lewis, J.K. 2012. A drive point application of the Guelph Permeameter method for coarse-textured soils. Geoderma 187–188, 59–66. Doi: 10.1016/j.geoderma.2012.04.004
  • Richter, G. 1980. On the Soil Erosion Problem in the Temperate Humid Area of Central Europe. GeoJournal 4, 279–287.
  • Richter, G. 1979. Bodenerosion in Rebanlagen des Moselgebietes. Ergebnisse quantitativer Untersuchungen 1974-1977. Universitat Trier, Ed. Forschungsstelle Bodenerosion d. Univ. Trier, Trier.
  • Richter, G. 1975. Der Aufbau der Forschungsstelle Bodenerosion und die ersten Messungen in Weinbergslagen. Forschungsstelle Bodenerosion der Universitat Trier, Trier.
  • Rienzner, M., Gandolfi, C. 2014. Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale. Soil & Tillage Research 135, 28 – 40. Doi: http://dx.doi.org/10.1016/j.still.2013.08.012
  • Rodrigo-Comino, J., Brings, C., Lassu, T., Iserloh, T., Senciales, J., Martínez-Murillo, J., Ruiz-Sinoga, J., Seeger, M., Ries, J., 2015a. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6, 823–837. Doi: 10.5194/se-6-823-2015
  • Rodrigo Comino, J., Lassu, T., González, J.M.S., Ruiz-Sinoga, J.D.R., Seeger, K.M., Ries, J.B. 2015b. Estudio de procesos geomorfodinámicos en campos cultivados de viñedos sobre laderas en pendientes en el valle del Ruwer (Alemania). Cuadernos Geográficos 54, 6–26.
  • Rodrigo-Comino, J., Iserloh, T., Morvan, X., Malam Issa, O., Naisse, C., Keesstra, S.D., Cerdà, A., Prosdocimi, M., Arnáez, J., Lasanta, T., Ramos, M.C., Marqués, M.J., Ruiz Colmenero, M., Bienes, R., Ruiz-Sinoga, J.D., Seeger, M., Ries, J.B., 2016. Soil Erosion Processes in European Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain and France. Hydrology 3, 1-19. doi:10.3390/hydrology3010006
  • Rodrigo Comino, J., Senciales González, J.M., 2015. Ratio LE para el ajuste de perfiles longitudinales en cursos fluviales de montaña. Aplicación a la cuenca del río Almáchar (Málaga, España). Cuaternario y Geomorfología 29, 31–56.
  • Ronayne, M.J., Houghton, T.B., Stednick, J.D. 2012. Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. Journal of Hydrology 458–459, 103–109. Doi: 10.1016/j.jhydrol.2012.06.036
  • Rosell, R.A., Gasparoni, J.C., Galantini, J.A. 2001. Soil organic matter evaluation. In: R. Lal, J. Kimble, R. Follet, B. Stewart (Eds.), Assessment Methods for Soil Carbon. Lewis Publishers, USA, pp. 311–322.
  • Ruiz-Sinoga, J.D., Martinez-Murillo, J.F. 2009. Effects of soil surface components on soil hydrological behaviour in a dry Mediterranean environment (Southern Spain). Geomorphology 108, 234–245. Doi: 10.1016/j.geomorph.2009.01.012
  • Salome, C., Coll, P., Lardo, E., Villenave, C., Blanchart, E., Hinsinger, P., Marsden, C., Le Cadre, E. 2014. Relevance of use-invariant soil properties to assess soil quality of vulnerable ecosystems: The case of Mediterranean vineyards. Ecological Indicators 43, 83–93. Doi: 10.1016/j.ecolind.2014.02.016
  • Soil moisture Equipment Corp. 2008. Model 2800K1 Guelph Permeameter Operating Instructions, Soil moisture Equipment Corp. ed. Santa Barbara, CA.
  • Taylor, J.A., Coulouma, G., Lagacherie, P., Tisseyre, B. 2009. Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. Geoderma 153, 278–284. Doi: 10.1016/j.geoderma.2009.08.014
  • van Leeuwen, C., Bois, B., De Resseguier, L., Roby, J.P. 2010. New methods and technologies to describe the environment in terroir studies. In: VIII International Terroir Congress, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura, Soave, Italia, pp. 2-13.
  • Wu, L., Swan, J.B., Paulson, W.H., Randall, G.W. 1992. Tillage effects on measured soil hydraulic properties. Soil & Tillage Research 25, 17–33. Doi: 10.1016/0167-1987(92)90059-K
  • Xiang, J. 1994. Improvements in evaluating constant-head permeameter test data. Journal of Hydrology 162, 77–97. Doi: 10.1016/0022-1694(94)90005-1
  • Zhang, Z.F., Groenevelt, P.H., Parkin, G.W. 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph Permeameter. Soil & Tillage Research 49, 219–221. Doi: 10.1016/S0167-1987(98)00174-3