Estudio del paradigma Internet de las Cosas y tecnologías inalámbricas como arquitectura base de captación de datos en las fases de ejecución y mantenimiento de los proyectos de construcción

  1. María Martínez-Rojas 1
  2. Gregorio Corpas 2
  3. Autilia Vitiello 3
  4. Giovanni Acampora 3
  5. Jose Manuel Soto-Hidalgo 3
  1. 1 Universidad de Málaga
    info

    Universidad de Málaga

    Málaga, España

    ROR https://ror.org/036b2ww28

  2. 2 Universidad de Córdoba
    info

    Universidad de Córdoba

    Córdoba, España

    ROR https://ror.org/05yc77b46

  3. 3 Universidad Federico II
Revista:
Enseñanza y aprendizaje de ingeniería de computadores: Revista de Experiencias Docentes en Ingeniería de Computadores

ISSN: 2173-8688

Año de publicación: 2019

Número: 9

Páginas: 87-96

Tipo: Artículo

Otras publicaciones en: Enseñanza y aprendizaje de ingeniería de computadores: Revista de Experiencias Docentes en Ingeniería de Computadores

Resumen

El paradigma de Internet de las Cosas está afianzándose como tecnología para mejorar la adquisición de datos y gestión de la información en el ámbito de la construcción. En general se consolida como tecnología emergente en todas las fases del ciclo de vida de los proyectos y en concreto, por su aplicabilidad y relevancia, en las fases de ejecución y mantenimiento. El sistema de captación y compartición de datos mediante dispositivos interconectados permite ´ la adquisición de éstos en tiempo real que, posteriormente, pueden ser gestionados por sistemas para ofrecer un soporte inteligente en el proceso de toma de decisiones. El objetivo de este trabajo es realizar un estudio sobre las propuestas existentes en la literatura que utilicen estos enfoques y explorar las necesidades en las fases de ejecución y mantenimiento del ciclo de vida de los proyectos de construcción.

Referencias bibliográficas

  • Ahuja, V., Yang, J., Shankar, R.: Benefits of collaborative ict adoption for building project management. Construction Innovation 9(3), 323–340 (2009)
  • Ansah, R.H., Sorooshian, S., Mustafa, S.B.: Lean construction: an effective approach for project management. ARPN Journal of Engineering and Applied Sciences 11(3), 1607–1612 (2016)
  • Antwi-Afari, M.F., Li, H.: Fall risk assessment of construction workers based on biomechanical gait stability parameters using wearable insole pressure system. Advanced Engineering Informatics 38, 683 – 694 (2018)
  • Awolusi, I., Marks, E., Hallowell, M.: Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices. Automation in Construction 85, 96 – 106 (2018)
  • Barro-Torres, S., Fernández-Caramés, T.M., Pérez-Iglesias, H.J., Escudero, C.J.: Real-time personal protective equipment monitoring system. Computer Communications 36(1), 42 – 50 (2012)
  • Carbonari, A., Giretti, A., Naticchia, B.: A proactive system for real-time safety management in construction sites. Automation in Construction 20(6), 686 – 698 (2011), selected papers from the 26th ISARC 2009
  • Cárcel-Carrasco, F.J., Peñalvo-López, E.: El uso de las tic para la formación en smart meters a los jefes de obra de edificación. un proyecto europeo. In: libro de resúmenes del 1er congreso internacional online del uso de las tic en la sociedad, la educación y la empresa. vol. 5, p. 43. 3Ciencias (2016)
  • Chae, S., Yoshida, T.: Application of RFID technology to prevention of collision accident with heavy equipment. Automation in Construction 19(3), 368 – 374 (2010), 25th International Symposium on Automation and Robotics in Construction
  • Cheng, M.Y., Chen, J.C.: Integrating barcode and gis for monitoring construction progress. Automation in Construction 11(1), 23 – 33 (2002)
  • Chou, J.S., Cheng, M.Y., Hsieh, Y.M., Yang, I.T., Hsu, H.T.: Optimal path planning in real time for dynamic building fire rescue operations using wireless sensors and visual guidance. Automation in Construction 99, 1 – 17 (2019)
  • Chung, J.K., Kumaraswamy, M.M., Palaneeswaran, E.: Improving megaproject briefing through enhanced collaboration with ict. Automation in construction 18(7), 966–974 (2009)
  • Dave, B., Buda, A., Nurminen, A., Främling, K.: A framework for integrating bim and iot through open standards. Automation in Construction 95, 35–45 (2018)
  • Dizdarevic, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration. ACM Computing Surveys (CSUR) 51(6), 116 (2019)
  • Fang, Y., Cho, Y.K., Zhang, S., Perez, E.: Case study of bim and cloud– enabled real-time RFID indoor localization for construction management applications. Journal of Construction Engineering and Management 142(7), 05016003 (2016)
  • de Gabriel, J.M.G., Fernández-Madrigal, J.A., López-Arquillos, A., Rubio-Romero, J.C.: Monitoring harness use in construction with ble beacons. Measurement 131, 329 – 340 (2019)
  • Ham, S., Popovics, J.S.: Application of contactless ultrasound toward automated inspection of concrete structures. Automation in Construction 58, 155 – 164 (2015)
  • Hassan, Q.: Internet of Things A to Z: Technologies and Applications. Wiley (2018).
  • Huang, Q., Mao, C.: Occupancy estimation in smart building using hybrid co2/light wireless sensor network. Journal of Applied Sciences and Arts 1(2), 5 (2017).
  • Jang, W.S., Healy, W.M., Skibniewski, M.J.: Wireless sensor networks as part of a webbased building environmental monitoring system. Automation in Construction 17(6), 729 – 736 (2008).
  • Jaselskis, E.J., El-Misalami, T.: Implementing radio frequency identification in the construction process. Journal of Construction Engineering and Management 129(6), 680–688 (2003).
  • Jia, M., Srinivasan, R.S.: Occupant behavior modeling for smart buildings: A critical review of data acquisition technologies and modeling methodologies. In: 2015 Winter Simulation Conference (WSC). pp. 3345–3355 (Dec 2015).
  • Jia, M., Srinivasan, R.S.: Occupant behavior modeling for smart buildings: A critical review of data acquisition technologies and modeling methodologies. In: Proceedings of the 2015 Winter Simulation Conference. pp. 3345–3355. IEEE Press (2015)
  • Kanan, R., Elhassan, O., Bensalem, R.: An iot-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Automation in Construction 88, 73 – 86 (2018)
  • Kasim, N.: Ict implementation for materials management in construction projects: case studies. Journal of Construction Engineering and Project Management 1(1), 31–36 (2011)
  • Kelm, A., Laußat, L., Meins-Becker, A., Platz, D., Khazaee, M.J., Costin, A.M., Helmus, M., Teizer, J.: Mobile passive radio frequency identification (RFID) portal for automated and rapid control of personal protective equipment (ppe) on construction sites. Automation in Construction 36, 38 – 52 (2013)
  • Kim, K., Cho, Y., Zhang, S.: Integrating work sequences and temporary structures into safety planning: Automated scaffolding-related safety hazard identification and prevention in bim. Automation in Construction 70, 128 – 142 (2016)
  • Lee, W., Lin, K.Y., Seto, E., Migliaccio, G.C.: Wearable sensors for monitoring on-duty and off-duty worker physiological status and activities in construction. Automation in Construction 83, 341 – 353 (2017)
  • Li, C.Z., Xue, F., Li, X., Hong, J., Shen, G.Q.: An internet of things-enabled bim platform for on-site assembly services in prefabricated construction. Automation in Construction 89, 146 – 161 (2018)
  • Louis, J., Dunston, P.S.: Integrating iot into operational workflows for real-time and automated decision-making in repetitive construction operations. Automation in Construction 94, 317 – 327 (2018)
  • Lu, Y., Li, Y., Skibniewski, M., Wu, Z., Wang, R., Le, Y.: Information and communication technology applications in architecture, engineering, and construction organizations: A 15- year review. Journal of Management in Engineering 31(1) (2014)
  • Marks, E.D., Teizer, J.: Method for testing proximity detection and alert technology for safe construction equipment operation. Construction Management and Economics 31(6), 636– 646 (2013)
  • Martínez-Rojas, M., Marín, N., Vila, M.A.: The role of information technologies to address data handling in construction project management. Journal of Computing in Civil Engineering 30(4), 04015064 (2016)
  • Matthews, J., Love, P.E., Heinemann, S., Chandler, R., Rumsey, C., Olatunj, O.: Real time progress management: Re-engineering processes for cloud-based bim in construction. Automation in Construction 58, 38 – 47 (2015)
  • M.Martínez-Rojas, N.Marín, C.Molina, M.Vila: Cost analysis in construction projects using fuzzy olap cubes. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). pp. 1–8 (Aug 2015). https://doi.org/10.1109/FUZZ-IEEE.2015.7338048
  • Pan, J., Jain, R., Paul, S., Vu, T., Saifullah, A., Sha, M.: An internet of things framework for smart energy in buildings: designs, prototype, and experiments. IEEE Internet of Things Journal 2(6), 527–537 (2015)
  • Park, J., Marks, E., Cho, Y.K., Suryanto, W.: Performance test of wireless technologies for personnel and equipment proximity sensing in work zones. Journal of Construction Engineering and Management 142(1) (2016)
  • Sardroud, J.M.: Influence of RFID technology on automated management of construction materials and components. Scientia Iranica 19(3), 381 – 392 (2012)
  • Shokri, S., Ahn, S., Lee, S., Haas, C.T., Haas, R.C.G.: Current status of interface management in construction: Drivers and effects of systematic interface management. Journal of Construction Engineering and Management 142(2), 04015070 (2016). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001035
  • Solanki, A., Nayyar, A.: Green Building Management and Smart Automation. Advances in Civil and Industrial Engineering, IGI Global (2019)
  • Teizer, J., Allread, B.S., Fullerton, C.E., Hinze, J.: Autonomous pro-active real-time construction worker and equipment operator proximity safety alert system. Automation in Construction 19(5), 630 – 640 (2010), building Information Modeling and CollaborativeWorking Environments
  • Teizer, J., Cheng, T.: Proximity hazard indicator for workers-on-foot near miss interactions with construction equipment and geo-referenced hazard areas. Automation in Construction 60, 58 – 73 (2015)
  • Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., Gambao, E.: Extending automation of building construction — survey on potential sensor technologies and robotic applications. Automation in Construction 36, 168 – 178 (2013)
  • Valero, E., Sivanathan, A., Bosché, F., Abdel-Wahab, M.: Analysis of construction trade worker body motions using a wearable and wireless motion sensor network. Automation in Construction 83, 48 – 55 (2017)
  • Wang, J., Razavi, S.N.: Low false alarm rate model for unsafe-proximity detection in construction. Journal of Computing in Civil Engineering 30(2), 04015005 (2016)
  • Wu, W., Yang, H., Chew, D.A., hua Yang, S., Gibb, A.G., Li, Q.: Towards an autonomous real-time tracking system of near-miss accidents on construction sites. Automation in Construction 19(2), 134 – 141 (2010)
  • Yang, H., Chew, D.A., Wu, W., Zhou, Z., Li, Q.: Design and implementation of an identification system in construction site safety for proactive accident prevention. Accident Analysis & Prevention 48, 193 – 203 (2012), intelligent Speed Adaptation + Construction Projects
  • Yang, J., Cheng, T., Teizer, J., Vela, P., Shi, Z.: A performance evaluation of vision and radio frequency tracking methods for interacting workforce. Advanced Engineering Informatics 25(4), 736 – 747 (2011), special Section: Advances and Challenges in Computing in Civil and Building Engineering.