Water poverty index (wpi) evaluation in borujerd-dorood watershed (iran) to reinforce land management plans

  1. Mohammadreza Goodarzi 1
  2. Rabi H. Mohtar 2
  3. Mahboobeh Kiani-Harchegani 1
  4. Alireza Faraji 3
  5. Faeze Mankavi 4
  6. Jesús Rodrigo-Comino 5
  1. 1 Yazd University
    info

    Yazd University

    Yazd, Irán

    ROR https://ror.org/02x99ac45

  2. 2 American University of Beirut
    info

    American University of Beirut

    Beirut, Líbano

    ROR https://ror.org/04pznsd21

  3. 3 Università della Basilicata
    info

    Università della Basilicata

    Potenza, Italia

    ROR https://ror.org/03tc05689

  4. 4 Grand ayatollah Borujerdi University
  5. 5 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Revista:
Pirineos

ISSN: 0373-2568

Año de publicación: 2021

Número: 176

Tipo: Artículo

DOI: 10.3989/PIRINEOS.2021.176002 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Pirineos

Resumen

El Índice de Pobreza Hídrica (WPI) se considera, en general, una herramienta simple y clara para evaluar los efectos de factores combinados sobre la escasez de agua y la tensión de los recursos hídri-cos. En esta investigación, intentamos centrarnos en las problemáticas hídricas en las cabeceras de montaña de la cuenca de Karoon en Irán para analizar el estado de los recursos hídricos. Para este propósito, los datos requeridos se obtuvieron en primer lugar mediante la preparación de un informe de la Autoridad del Agua, la parte Agrícola y la Organización de Agua y Saneamiento del Condado de Borujerd. Luego, se estimó el valor del WPI a escala de subcuenca del río Karoon considerando como recurso la posibilidad de acceso, capacidad socioeconómica, usos y criterios de calidad ambiental. Los resultados de esta investigación in-dicaron un rango de variación entre 6,6 y 18,2, obteniendo el punto más bajo por su condición ambiental actual y el punto más alto por el fácil acceso. Los valores más altos de cada criterio muestran las mejores condiciones que conducen a una menor pobreza hídrica en esa subcuenca. En general, el valor de WPI es aproximadamente 67,65, según la clasificación del centro de Ecología e Hidrología de Wallingford, esta subcuenca se ubica en un rango de pobreza hídrica de baja a moderada. Dado el carácter multidimensional del WPI y considerando todos los factores que afectan a la disponibilidad o falta de recursos hídricos, así como las implicaciones económicas y sociales para la población dedicada, principalmente a la agricultura y la ganadería, podemos concluir que este índice puede ser considerado como una herramienta útil para esta región priorizar las áreas críticas y un paso efectivo para el desarrollo y uso óptimo de sus recursos hídricos

Referencias bibliográficas

  • Alessa, L., Kliskey, A., Lammers, R., Arp, C., White, D., Hinzman, L. & Busey, R., 2008. The arctic water resource vulnerability index: an integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environmental Management, 42(3): 523.
  • Ariapour, A., Ghermezcheshmeh, B., Nasaji, M. & Piroozi, N., 2014. Effect prediction of rangeland condition changes on runoff by HEC-HMS model in Sarab-Sefid basin of Borujerd. RS & GIS for Natural Resources, 4(4): 62-78.
  • Asiabi-Hir, R., Mostafazadeh, R. & Esmali Ouri, A., 2018. Multi-criteria evaluation of water poverty index spatial variations in some watersheds of Ardabil Province. Iranian Journal of Ecohydrology, 4(4): 943-1268.
  • Babel, M.S. & Wahid, S.M., 2009. Freshwater under threat: South Asia. Vulnerability assessment of freshwater resources to environmental change. United Nations Environment Programme and Asian Institute of Technology, Bangkok.
  • Brooks, N., Adger, W.N. & Kelly, P.M., 2005. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change, 15(2): 151-163.
  • Brown, A. & Matlock, M.D., 2011. A review of water scarcity indices and methodologies. White paper, 106: 19.
  • Cho, D.I., Ogwang, T. & Opio, C., 2010. Simplifying the water poverty index. Social Indicators Research, 97(2): 257-267.
  • Cho, D.L. & Ogwang, T., 2014. Water Poverty Index. Encyclopedia of Quality of Life and Well-Being Research, Springer Netherlands: 7003-7008.
  • Colantoni, A., Grigoriadis, E., Sateriano, A., Venanzoni, G. & Salvati, L., 2016. Cities as selective land predators? A lesson on urban growth, deregulated planning and sprawl containment. Science of The Total Environment, 545–546: 329–339.
  • Connor, R., 2015. The United Nations world water development report 2015: water for a sustainable world (Vol. 1). UNESCO publishing: 139 pp.
  • Cullis, J. & Regan, O.D., 2004. Targeting the water-poor through water poverty mapping. Water Policy, 6(5): 397-411.
  • Diwakar, J. & Thakur, J.K. 2012. Environmental system analysis for river pollution control. Water, Air, & Soil Pollution, 223(6): 3207-3218.
  • Eckhardt, K., 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1-2): 168-173.
  • El-Gafy, I.K.E.D., 2018. The water poverty index as an assistant tool for drawing strategies of the Egyptian water sector. Ain Shams Engineering Journal, 9(2): 173-186.
  • FAO, 2008. Food and Agriculture Organization of the United Nations: Irrigation in the Middle East region in figures. AQUASTAT Survey, Rome, Italy.
  • FAO, 2014. The Water-Energy-Food Nexus, A new approach in support of food security and sustainable agriculture, Rome, 2014, 28 p.
  • Hamouda, M.A., El-Din, M.M.N. & Moursy, F.I., 2009. Vulnerability assessment of water resources systems in the Eastern Nile Basin. Water Resources Management, 23(13): 2697-2725.
  • Han, H. & Zhao, L., 2005. Rural income poverty in Western China is water poverty. China World Economy, 13(5): 76-88.
  • Howard, G. & Bartram, J., 2003. Domestic water quantity, service level and health (No. WHO/SDE/WSH/03.02). World Health Organization.
  • Jafari Shalamzari, M. & Zhang, W., 2018. Assessing water scarcity using the water poverty index (WPI) in Golestan province of Iran. Water, 10(8): 1079.
  • Jahangir, M.H. & Yarahmadi, Y., 2020. Hydrological drought analyzing and monitoring by using Streamflow Drought Index (SDI) (case study: Lorestan, Iran). Arabian Journal of Geosciences, 13(3): 110.
  • Jemmali, H., 2017. Mapping water poverty in Africa using the improved Multidimensional Index of Water Poverty. International Journal of Water Resources Development, 33(4): 649-666.
  • Jodar-Abellan, A., Fernández-Aracil, P. & Melgarejo-Moreno, J., 2019a. Assessing Water Shortage through a Balance Model among Transfers, Groundwater, Desalination, Wastewater Reuse, and Water Demands (SE Spain). Water, 11: 1009.
  • Jodar-Abellan, A., López-Ortiz, M.I. & Melgarejo-Moreno, J., 2019b. Wastewater Treatment and Water Reuse in Spain. Current Situation and Perspectives. Water, 11: 1551.
  • Juran, L., MacDonald, M.C., Basu, N. B., Hubbard, S., Rajagopal, R., Rajagopalan, P. & Philip, L., 2017. Development and application of a multi-scalar, participant-driven water poverty index in post-tsunami India. International Journal of Water Resources Development, 33(6): 955-975.
  • Kiani-Harchegani, M. & Sadeghi, S.H., 2020a. Practicing land degradation neutrality (LDN) approach in the Shazand Watershed, Iran. Science of the Total Environment, 698: 134319.
  • Kiani-Harchegani, M. & Sadeghi, S.H., 2020b. Soil quality analysis of the Shazand watershed ecosystem. Iranian Journal of Soil and Water Research, 50 (800784): 1843-1854.
  • Kiani-Harchegani, M., Sadeghi, S.H., Singh, V.P., Asadi, H. & Abedi, M., 2019. Effect of rainfall intensity and slope on sediment particle size distribution during erosion using partial eta squared. Catena, 176: 65-72.
  • Koirala, S., Fang, Y., Dahal, N.M., Zhang, C., Pandey, B. & Shrestha, S., 2020. Application of Water Poverty Index (WPI) in Spatial Analysis of Water Stress in Koshi River Basin, Nepal. Sustainability, 12(2): 727.
  • Kojiri, T., 2008. Importance and necessity of integrated river basin management. Physics and Chemistry of the Earth, Parts A/B/C, 33(5): 278-283.
  • Kumar, V., Parihar, R.D., Sharma, A., Bakshi, P., Singh Sidhu, G.P., Bali, A.S., Karaouzas, I., Bhardwaj, R., Thukral, A.K., Gyasi-Agyei, Y. & Rodrigo-Comino, J., 2019. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236: 124364.
  • Lawrence, P.R., Meigh, J. & Sullivan, C., 2002. The water poverty index: an international comparison. Keele, Straffordshire, UK: Department of Economics, Keele University.
  • Manandhar, S., Pandey, V.P. & Kazama, F., 2012. Application of water poverty index (WPI) in Nepalese context: A case study of Kali Gandaki River Basin (KGRB). Water Resources Management, 26(1): 89-107.
  • Minea, G., Ioana-Toroimac, G., Moro, G., 2019. The dominant runoff processes on grassland versus bare soil hillslopes in a temperate environment - An experimental study. Journal of Hydrology and Hydromechanics, 67: 8.
  • Minea, G. & Moroşanu, G., 2014. Research of water balance at hydrological micro-scale in the Aldeni experimental basin (Romania). Forum geografic XIII: 185–192.
  • Ministry of Energy, 2005. Guide lines and criteria for classification and coding watersheds and study areas in Iran. Publication no. 282-A.178 p.
  • Mlote, S.D., Sullivan, C. & Meigh, J., 2002. October. Water poverty index: a tool for integrated water management. 3rd WaterNet/Warfsa Symposium ‘Water Demand Management for Sustainable Development’, Dar es Salaam, 30-31 October 2002.
  • Mohammad Jani, I. & Yazdanian, N., 2014. The analysis of water crisis conjecture in Iran and the exigent measures for its management. Trend (Trend of Economic Research, 21 (65-66): 117-144.
  • Mugagga, F. & Nabaasa, B.B., 2016. The centrality of water resources to the realization of Sustainable Development Goals (SDG). A review of potentials and constraints on the African continent. International Soil and Water Conservation Research, 4(3): 215-223.
  • Muoghalu J.I., 2009. Desertification and vegetation monitoring. Environmental monitoring – Vol. II - Desertification and Vegetation Monitoring ©Encyclopedia of Life Support Systems (EOLSS) 2009. (Editor(s): Hilary I. Inyang, John L. Daniels)
  • OhIsson, L., 2000. Water conflicts and social resource scarcity. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(3): 213-220.
  • Pandey, V.P., Babel, M.S., Shrestha, S. & Kazama, F. 2011. A framework to assess adaptive capacity of the water resources system in Nepalese river basins. Ecological Indicators, 11(2): 480-488.
  • Pardoe, J., Conway, D., Namaganda, E., Vincent, K., Dougill, A.J. & Kashaigili, J.J., 2018. Climate change and the water–energy–food nexus: insights from policy and practice in Tanzania. Climate Policy, 18(7): 863-877.
  • Peel, M.C., Finlayson, B.L. & McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5): 1633–1644.
  • Rijsberman, F.R., 2006. Water scarcity: fact or fiction? Agricultural Water Management, 80(1-3): 5-22.
  • Rodrigo-Comino, J., López-Vicente, M., Kumar, V., Rodríguez-Seijo, A., Valkó, O., Rojas, C., Pourghasemi, H.R., Salvati, L., Bakr, N., Vaudour, E., Brevik, E.C., Radziemska, M., Pulido, M., Di Prima, S., Dondini, M., de Vries, W., Santos, E.S., Mendonça-Santos, M. de L., Yu, Y., Panagos, P., 2020. Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air, Soil and Water Research, 13: 1178622120977491.
  • Salvati, L. & Carlucci, M., 2016. Patterns of Sprawl: The Socioeconomic and Territorial Profile of Dispersed Urban Areas in Italy. Regional Studies, 50: 1346–1359.
  • Shakya B., 2012. Analysis and mapping water poverty of Indrawati Basin. World Wide Fund for Nature Nepal Report, 70 pp.
  • Smakhtin, V.U., 2001. Low flow hydrology: a review. Journal of Hydrology, 240: 147- 186.
  • Smedema, L.K., 2003. Irrigated agriculture in Iran: a review of the principal sustainability, reform and efficiency issues. 28 pp.
  • Sullivan, C., 2002. Calculating a water poverty index. World development, 30(7): 1195-1210.
  • Sullivan, C.A. & Jemmali, H., 2014. Toward understanding water conflicts in MENA region: a comparative analysis using water poverty index. In: Economic Research Forum. Working Paper (Vol. 859), 27 pp.
  • Sullivan, C.A., Meigh, J.R. & Giacomello, A.M., 2003. The water poverty index: development and application at the community scale. Natural Resources Forum, 27 (3): 189-199. Oxford, UK: Blackwell Publishing Ltd.
  • Sullivan, C.A., Meigh, J. & Lawrence, P., 2006. Application of the Water Poverty Index at Different Scales: A Cautionary Tale. In: Memory of Jeremy Meigh who gave his life’s work to the improvement of peoples lives. Water International, 31(3): 412-426.
  • Sullivan, C., Meigh, J. & Fediw, T., 2002. Derivation and testing of the water poverty index phase 1. Final report, volume 1 – overview, center for ecology & hydrology (CEH). International Development and the Natural Environment Research Council, UK.
  • Taghipour, M. & Sarchoghaei, J.A., 2015. Evaluation of Tourist Attractions in Borujerd County with Emphasis on Development of New Markets by Using Topsis Model. Science Journal of Business and Management, 3(5): 175.
  • Thakur, J.K., Neupane, M. & Mohanan, A.A., 2017. Water poverty in upper Bagmati River basin in Nepal. Water Science, 31(1): 93-108.
  • UNCED. 1992. United Nations Conference on Environment & Development Rio de Janerio, Brazil, 3 to 14 June 1992 AGENDA 21.
  • van der Vyver, C., 2013. Water poverty index calculation: additive or multiplicative function?. Journal of South African Business Research, 2013. ID 615770, 1-11.
  • Van Ty, T., Sunada, K., Ichikawa, Y. & Oishi, S., 2010. Evaluation of the state of water resources using Modified Water Poverty Index: A case study in the Srepok River basin, Vietnam–Cambodia. International Journal of River Basin Management, 8(3-4): 305-317.
  • Vargas-Pineda, O.I., Trujillo-González, J.M., Torres-Mora, M.A., 2020. Supply–Demand of Water Resource of a Basin With High Anthropic Pressure: Case Study Quenane-Quenanito Basin in Colombia. Air, Soil and Water Research, 13: 1178622120917725.
  • Viviroli, D., Weingartner, R. & Messerli, B., 2003. Assessing the hydrological significance of the world’s mountains. Mountain Research and Development, 23(1): 32-40.
  • WCED, S.W.S., 1987. World commission on environment and development. Our common future, 17: 1-91.
  • Weststrate, J., Dijkstra, G., Eshuis, J., Gianoli, A. & Rusca, M., 2019. The Sustainable Development Goal on Water and Sanitation: Learning from the Millennium Development Goals. Social Indicators Research, 143(2): 795-810.
  • WHO/UNICEF. 2000. World Health Organization/United Nations Childrens Fund. Joint monitoring programe for water supply and sanitation. Global Water Supply and Sanitation Assessment Report.2000.
  • Wurtz, M., Angeliaume, A., Herrera, M.T.A., Blot, F., Paegelow, M., & Reyes, V.M., 2019. A spatial application of the water poverty index (WPI) in the State of Chihuahua, Mexico. Water Policy, 21(1): 147-161.
  • Yegemova, S., Kumar, R., Abuduwaili, J., Ma, L., Samat, A., Issanova, G., Ge, Y., Kumar, V., Keshavarzi, A. & Rodrigo-Comino, J., 2018. Identifying the key information and land management plans for water conservation under dry weather conditions in the Border areas of the Syr Darya River in Kazakhstan. Water, 10(12): 1754.