Plásticosrevisión bibliográfica en Didáctica de las Ciencias Experimentales (2010-2019)

  1. María del Mar López-Fernández 1
  2. Francisco González-García 1
  3. Antonio Joaquín Franco-Mariscal 2
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 Universidad de Málaga
    info

    Universidad de Málaga

    Málaga, España

    ROR https://ror.org/036b2ww28

Revista:
Revista de educación

ISSN: 0034-8082

Año de publicación: 2022

Título del ejemplar: Acoso escolar y riesgos de Internet : diagnóstico, prevención e intervención

Número: 397

Páginas: 261-292

Tipo: Artículo

DOI: 10.4438/1988-592X-RE-2022-397-547 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de educación

Objetivos de desarrollo sostenible

Resumen

Although plastics form part of everything that surrounds us due to their excellent properties, they also represent an environmental problem that requires an educational response. This paper presents an exploratory and descriptive study of the educational research published in this field, both nationally and internationally, over the past decade using the PRISMA declaration for systematic reviews. The analysis was performed using a selection of journals with confirmed quality indices in science education (six Spanish and four international). For each study, the authorship, nature (research or innovation), plastics-related content, educational level (infant, primary, secondary or university), methodology used (quantitative, qualitative or mixed) and teaching focus (propedeutic or competence-based) were analysed. The review shows that such studies are in the minority in the literature analysed, not exceeding 3.4% nationally or 2.3% internationally, with educational research accounting for the majority of studies. With regard to the content covered, the composition and properties of plastics predominate, with studies related to environmental awareness or solutions to the problem, which are considered to be key, receiving relatively little attention. It is also seen that the authorship of non-university teachers is relatively low and that qualitative methodologies are used most often. Moreover, the transmission of content rather than competence-based teaching predominates. The above suggests that the problem of plastics remains a challenge in teaching.

Referencias bibliográficas

  • Affeldt, F., Tolppanen, S., Aksela, M., & Eilks, I. (2017). The potential of the non-formal educational sector for supporting chemistry learning sustainability education for all students a joint perspective from two cases in Finland and Germany. Chemistry Education Research & Practice, 18(1), 13-25.
  • Akerson, V., Nargund, V., Weiland, I., Pongsanon, K., & Avsar, B. (2014). What third-grade students of differing ability levels learn about nature of science after a year of instruction. International Journal of Science Education, 36(2), 244-276.
  • Álvarez, O., Sureda, J., y Comas, R. (2018). Evaluación de las competencias ambientales del profesorado de primaria en formación inicial: estudio de caso. Enseñanza de las Ciencias, 36(1), 117-141.
  • Angulo. F., Zapata, L., Soto, C.A., Quintero, S., Ceballos, A.F., Cardona, F.,... & Delgado, E. (2012). ¿Contribuyen los talleres en el Museo de Ciencias a fomentar actitudes hacia la conservación del ambiente? Enseñanza de las Ciencias, 30(3), 53-70.
  • Aubrecht, K.B., Padwa, L., Shen, X., & Bazargan, G. (2015). Development and implementation of a series of laboratory field trips for advanced high school students to connect chemistry to sustainability. Journal of Chemical Education, 92(4), 631-637.
  • Avent, C.M., Boyce, A.S., LaBennett, R., & Taylor, D.K. (2018). Increasing Chemistry Content Engagement by Implementing Polymer Infusion into Gatekeeper Chemistry Courses. Journal of Chemical Education, 95(12), 2164-2171.
  • Baquete, A.M., Grayson, D., & Mutimucuio, I.V. (2016). An exploration of Indigenous knowledge related to physics concepts held by senior citizens in Chókwé, Mozambique. International Journal of Science Education, 38(1), 1-16.
  • Basso, A., Chiorri, C., Bracco, F., Carnasciali, M.M., Alloisio, M., & Grotti, M. (2018). Improving the interest of high-school students toward chemistry by crime scene investigation. Chemistry Education Research and Practice, 19(2), 558-566.
  • Bell, P. (2014). Design of a food chemistry-themed course for nonscience majors. Journal of Chemical Education, 91(10), 1631-1636.
  • Blanchard, M.R., Southerland, S.A., Osborne, J.W., Sampson, V.D., Annetta, L.A., & Granger, E.M. (2010). Is inquiry possible in light of accountability? A quantitative comparison of the relative effectiveness of guided inquiry and verification laboratory Instruction. Science Education, 94(4), 577-616.
  • Bouldin, R.M., & Folchman, Z. (2019). Chemistry of Sustainable Products:Filling the Business Void in Green-Chemistry Curricula. Journal of Chemical Education, 96(4), 647-651.
  • Burmeister, M., & Eilks, I. (2012). An example of learning about plastics and their evaluation as a contribution to education for sustainable development in secondary school chemistry teaching. Chemistry Education Research and Practice, 13(2), 93-102.
  • Busch, K.C., Ardoin, N., Gruehn, D., & Stevenson, K. (2019). Exploring a theoretical model of climate change action for youth. International Journal of Science Education, 41(17), 2389-2409.
  • Bybee, R., & McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of Science Education, 33(1), 7-26.
  • Campbell, T., Oh, P.S., & Neilson, D. (2012). Discursive modes and their pedagogical functions in model-based inquiry (MBI) classrooms. International Journal of Science Education, 34(15), 2393- 2419.
  • Carmel, J.H., Herrington, D.G., Posey, L.A., Ward, J.S., Pollock, A.M., & Cooper, M.M. (2019). Helping students to “do science”: Characterizing scientific practices in general chemistry laboratory curricula. Journal of Chemical Education, 96(3), 423-434.
  • Caurín, A., Morales, A.J., & Solaz, J.J. (2012). ¿Es posible un cambio de actitudes hacia un modelo de desarrollo sostenible? Didáctica de las Ciencias Experimentales y Sociales, 26, 229-245.
  • Cedervall, T., Ekvall, M.T., Mattsson, K., & Lundqvist, M. (2019). Workshop on Environmental Nanosafety: Biological Interactions of Plastic Nanoparticles. Journal of Chemical Education, 96(9), 1967-1970.
  • Cersonsky, R.K., Foster, L.L., Ahn, T., Hall, R.J., Van Der Laan, H.L., & Scott, T.F. (2017). Augmenting primary and secondary education with polymer science and engineering. Journal of Chemical Education, 94(11),1639-1646.
  • Chen, Y.C., Benus, M.J., & Hernández, J. (2019). Managing uncertainty in scientific argumentation. Science Education, 103(5), 1235-1276.
  • Chiu, M.H., Mamlok, R., & Apotheker, J. (2019). Identifying systems thinking components in the school science curricular standards of four countries. Journal of Chemical Education, 96(12), 2814-2824.
  • Christensson, C., & Sjöström, J. (2014). Chemistry in context: analysis of thematic chemistry videos available online. Chemistry Education Research and Practice, 15(1), 59-69.
  • Chu, H.E., Treagust, D.F., Yeo, S., & Zadnik, M. (2012). Evaluation of students’ understanding of thermal concepts in everyday contexts. International Journal of Science Education, 34(10), 1509- 1534.
  • Colley, C., & Windschitl, M. (2016). Rigor in elementary science students’ discourse: The role of responsiveness and supportive conditions for talk. Science Education, 100(6), 1009-1038.
  • Cook, D.H. (2014). Conflicts in chemistry: The case of plastics. A roleplaying game for high school chemistry students. Journal of Chemical Education, 91(10), 1580-1586.
  • Corbelle, J., & Domínguez, J.M. (2016). Estado de la cuestión sobre el aprendizaje y la enseñanza de la radiactividad en la educación secundaria. Enseñanza de las Ciencias, 33(3), 137-158.
  • Corraliza, J.A., & Collado, S. (2019). Conciencia ecológica y experiencia ambiental en la infancia. Papeles del Psicólogo, 40(3), 190-196.
  • Criado, A.M., Cruz, M., García-Carmona, A., & Cañal, P. (2014). ¿Cómo mejorar la educación científica se primaria en España desde el currículum oficial? Sugerencias a partir de un análisis curricular comparativo en torno a las finalidades y contenidos de la ciencia escolar. Enseñanza de las Ciencias, 32(3), 249-266.
  • De Sá Ibraim, S., & Justi, R. (2016). Teachers’ knowledge in argumentation: contributions from an explicit teaching in an initial teacher education programme. International Journal of Science Education, 38(12), 1996-2025.
  • Di Mauro, M.F., & Furman, M. (2016). Impact of an inquiry unit on grade 4 students’ science learning. International Journal of Science Education, 38(14), 2239-2258.
  • Dimick, A.S. (2012). Student empowerment in an environmental science classroom: Toward a framework for social justice science education. Science Education, 96(6), 990-1012.
  • Elías, R. (2015). Mar del plástico: una revisión del plástico en el mar. Marine & Fishery Sciences, 27, 83-105.
  • Erdal, N.B., Hakkarainen, M., & Blomqvist, A.G. (2019). Polymers, Giant Molecules with Properties: An Entertaining Activity Introducing Polymers to Young Students. Journal of Chemical Education, 96(8), 1691-1695.
  • Eriksen, M., Maximenko, N., & Thiel, M. (2013). Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLOS ONE, 9(12).
  • Fernández, A., & Conde, J.L. (2010). La ecopedagogía en la formación inicial de maestros. Investigación en la Escuela, 71, 39-49.
  • Fernández, Y. (2008). ¿Por qué estudiar las percepciones ambientales? Una revisión de la literatura mexicana con énfasis en Áreas Naturales Protegidas. Espiral, 15(43), 179-202.
  • Finkenstaedt, S.A., Halim, A.S., Chambers, T.G., Moon, A., Goldman, R.S., Gere, A.R., & Shultz, G.V. (2017). Investigation of the influence of a writing-to-learn assignment on student understanding of polymer properties. Journal of Chemical Education, 94(11), 1610-1617.
  • Furió, C., Vilches, A., Guisasola, J., & Romo, V. (2001). Finalidades de la enseñanza de las ciencias en la Secundaria obligatoria. ¿Alfabetización científica o preparación propedéutica? Enseñanza de las Ciencias, 19(3), 365-376.
  • Gamboa, G.A. (2015). Los Objetivos de Desarrollo Sostenible: una perspectiva bioética. Persona y Bioética, 19(2), 175-181.
  • Gao, R. (2015). Incorporating students’self-designed, researchbased analytical chemistry projects into the instrumentation curriculum. Journal of Chemical Education, 92(3), 444-449.
  • García, I., & Moreno, O. (2015). El alumnado de primaria participante en el programa educativo Ecoescuelas ante las problemáticas socioambientales. De la perspectiva local a la global. Investigación en la Escuela, 87, 91-104.
  • Garmendia, M., & Guisasola, J. (2015). Alfabetización científica en contextos escolares: Proyecto ZientziaLive! Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(2), 294-310.
  • Gil, J. (2012). Actitudes del alumnado español hacia las ciencias en la evaluación PISA 2006. Enseñanza de las Ciencias, 30(2), 131-152.
  • Goldman, D., Assaraf, O.B.Z., & Shaharabani, D. (2013). Influence of a non-formal environmental education programme on junior highschool students’ environmental literacy. International Journal of Science Education, 35(3), 515-545.
  • González, A., & Puig, B. (2017). Analizar una problemática ambiental local para practicar la argumentación en clase de ciencias. Revista Electrónica de Enseñanza de las Ciencias, 16(2), 280-297.
  • Guerra, M.T., Ryder, J., & Leach, J. (2010). Ideas about the nature of science in pedagogically relevant contexts: Insights from a situated perspective of primary teachers’ knowledge. Science Education, 94(2), 282-307.
  • Haglund, J., Jeppsson, F., & Andersson, J. (2012). Young children’s analogical reasoning in science domains. Science Education, 96(4), 725-756.
  • Hilton, A., & Nichols, K. (2011). Representational classroom practices that contribute to students’ conceptual and representational understanding of chemical bonding. International Journal of Science Education, 33(16), 2215-2246.
  • Hoe, K.Y., & Subramaniam, R. (2016). On the prevalence of alternative conceptions on acid–base chemistry among secondary students:insights from cognitive and confidence measures. Chemistry Education Research and Practice, 17(2), 263-282.
  • Hoffman, A., & Turner, K. (2015). Microbeads and engineering design in chemistry: No small educational investigation. Journal of Chemical Education, 92(4), 742-746.
  • Hong, Z.R., Lin, H.S., Wang, H.H., Chen, H.T., & Yang, K.K. (2013). Promoting and scaffolding elementary school students’ attitudes toward science and argumentation through a science and society intervention. International Journal of Science Education, 35(10), 1625-1648.
  • Hurst, G.A., Slootweg, J.C., Balu, A.M., Climent, M.S., Gomera, A., Gomez, P., ... & Ibanez, J.G. (2019). International perspectives on Green and sustainable chemistry education via systems thinking. Journal of Chemical Education, 96(12), 2794-2804.
  • Jaén, M., & Palop, E. (2011). ¿Qué piensan y cómo dicen que actúan los alumnos y profesores de un centro de educación secundaria sobre la gestión del agua, energía y los residuos? Enseñanza de las Ciencias, 29(1), 61-74.
  • Jaén, M., Esteve, P., & Banos, I. (2019) Los futuros maestros ante el problema de la contaminación de los mares por plásticos y el consumo. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16(1), 1501.
  • Jone, M.L., & Seybold, P.G. (2016). Combining chemical information literacy, communication skills, career preparation, ethics, and peer review in a team-taught chemistry course. Journal of Chemical Education, 93(3), 439-443.
  • Khaddoor, R., Al-Amoush, S., & Eilks, I. (2017). A comparative analysis of the intended curriculum and its presentation in 10th grade chemistry textbooks from seven Arabic countries. Chemistry Education Research and Practice, 18(2), 375-385.
  • Kim, M. (2016). Children’s reasoning as collective social action through problem solving in Grade 2/3 science classrooms. International Journal of Science Education, 38(1), 51-72.
  • King, C.J. (2010). An analysis of misconceptions in science textbooks: Earth science in England and Wales. International Journal of Science Education, 32(5), 565-601.
  • Knutson, C.M., Schneiderman, D.K., Yu, M., Javner, C.H., Distefano, M.D., & Wissinger, J.E. (2017). Polymeric medical sutures: An exploration of polymers and Green Chemistry. Journal of Chemical Education, 94(11), 1761-1765.
  • Koch, B.S., & Barber, M.M. (2019). Basuras marinas; impacto, actualidad y las acciones para mitigar sus consecuencias. Revista de Marina, 968, 30-39.
  • Lee, V.R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099-1126.
  • Leuchter, M., Saalbach, H., & Hardy, I. (2014). Designing Science Learning in the First Years of Schooling. An intervention study with sequenced learning material on the topic of ‘floating and sinking’. International Journal of Science Education, 36(10), 1751-1771.
  • Lewis, M.S., Zhao, J., & Montclare, J.K. (2012). Development and implementation of high school chemistry modules using touch-screen technologies. Journal of Chemical Education, 89(8), 1012-1018.
  • Lin, H.S., Hong, Z.R., & Chen, Y.C. (2013). Exploring the development of college students’ situational interest in learning science. International Journal of Science Education, 35(13), 2152-2173.
  • Ljung, A., Magnusson, A., & Peterson, S. (2014). From doing to learning: Changed focus during a pre-school learning study project on organic decomposition. International Journal of Science Education, 36(4), 659-676.
  • López, L., & Guerrero, A. (2019). ¿Qué creen estudiantes de Educación qué se puede hacer ante la situación de emergencia climática desde la Universidad, como profesionales y como ciudadanos? Investigación en la Escuela, 99, 46-59.
  • López-Fernández, M.M., González, F., & Franco-Mariscal, A.J. (2021). ¿Qué ideas iniciales tienen los estudiantes de 1º de E.S.O. sobre la contaminación medioambiental por plásticos? Actas del 29 Encuentros de Didáctica de las Ciencias Experimentales, (pp. 1031-1037). Córdoba: Universidad de Córdoba y ÁPICE.
  • Lotter, C., Smiley, W., Thompson, S., & Dickenson, T. (2016). The impact of a professional development model on middle school science teachers’ efficacy and implementation of inquiry. International Journal of Science Education, 38(18), 2712-2741.
  • Lusher, A., Hollman, P., & Mendoza, J. (2017). Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. United Kingdom: FAO.
  • Madden, L., & Wiebe, E. (2015). Multiple perspectives on elementary teachers’ science identities: A case study. International Journal of Science Education, 37(3), 391-410.
  • Manchón, A.F., & García-Carmona, A. (2018). ¿Qué investigación didáctica en el aula de física se publica en España? Una revisión crítica de la última década para el caso de educación secundaria. Enseñanza de las Ciencias, 36(2), 125-141.
  • Mandler, D., Mamlok R., Blonder, R., Yayon, M., & Hofstein, A. (2012). High-school chemistry teaching through environmentally oriented curricula. Chemistry Education Research and Practice, 13(2), 80-92.
  • Marcén, C., & Molina, P.J. (2006). La persistencia de las opiniones de los escolares sobre el Medio Ambiente. Una particular visión retrospectiva desde 1980 a 2005. Madrid: MMA.
  • Marker, S.C., Konkankit, C.C., Walsh, M.C., Lorey, D.R., & Wilson, J.J. (2019). Radioactive World: An Outreach Activity for Nuclear Chemistry. Journal of Chemical Education, 96(10), 2238-2246.
  • Martín, R., & Galán, P. (2012). Los criterios de clasificación de la materia inerte en la Educación Primaria: concepciones de los alumnos y niveles de competencia. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(2), 213-230.
  • Meyer, A.F., Knutson, C.M., Finkenstaedt, S.A., Gruba, S.M., Meyer, B.M., Thompson, J.W., ... & Haynes, C.L. (2014). Activities for middle school students to sleuth a chemistry “Whodunit” and investigate the scientific method. Journal of Chemical Education, 91(3), 410-413.
  • Miller, D.M., & Czegan, D.A. (2016). Integrating the liberal arts and chemistry: A series of general chemistry assignments to develop science literacy. Journal of Chemical Education, 93(5), 864-869.
  • Miller, J.L., Wentzel, M.T., Clark, J.H., & Hurst, G.A. (2019). Green machine: a card game introducing students to systems thinking in green chemistry by strategizing the creation of a recycling plant. Journal of Chemical Education, 96(12), 3006-3013.
  • Morales, D., Childress, T., & Chappell, M.J. (2019). Chemicals are contaminants too: Teaching appreciation and critique of science in the era of Next Generation Science Standards (NGSS). Science Education, 103(6), 1347-1366.
  • Moreno, O., & García, F.F. (2015). Ciudadanía, participación y compromiso con los problemas socio-ambientales. Concepciones del alumnado participante en programas educativos andaluces. Investigación en la Escuela, 86, 21-34.
  • Muñoz, L., & Jiménez, M.R. (2017). Sistema acuopónico para trabajar los ecosistemas a nivel meso en educación infantil. Investigación en la Escuela, 93, 30-42.
  • Murphy, K.C., Dilip, M., Quattrucci, J.G., Mitroka, S.M., & Andreatta, J.R. (2019). Sustainable consumer choices: An outreach program exploring the environmental impact of our consumer choices using a systems thinking model and laboratory activities. Journal of Chemical Education, 96(12), 2993-2999.
  • Nisiforou, O., & Charalambides, A.G. (2012). Assessing undergraduate university students’ level of knowledge, attitudes and behaviour towards biodiversity: a case study in Cyprus. International Journal of Science Education, 34(7), 1027-1051.
  • Park, J., Abrahams, I., & Song, J. (2016). Unintended knowledge learnt in primary science practical lessons. International Journal of Science Education, 38(16), 2528-2549.
  • Paul, J., Lederman, N.G., & Gro, J. (2016). Learning experimentation through science fairs. International Journal of Science Education, 38(15), 2367-2387.
  • Pedrinaci, E., Caamaño, A., Cañal, P., & Pro, A. (2012). 11 ideas clave. El desarrollo de la competencia científica. Barcelona: Graó.
  • Pérez, R., & Delgado, Á. (2012). La educación física y la adquisición de valores relacionados con el medio ambiente. Investigación en la Escuela, 77, 85-118.
  • Pilcher, S.C. (2017). Hybrid course design: A different type of polymer blend. Journal of Chemical Education, 94(11), 1696-1701.
  • Pro, A., & Rodríguez, J. (2010). Aprender competencias en una propuesta para la enseñanza de los circuitos eléctricos en educación primaria. Enseñanza de las Ciencias, 28(3), 385-404.
  • Pro, A., & Rodríguez, J. (2014). Desarrollo de la propuesta “si se necesita más energía… que no se hagan más centrales” en un aula de educación primaria. Enseñanza de las Ciencias,32(3), 267-284.
  • Quigley, C.F., Miller, Z.D., Dogbey, J., Che, S.M., & Hallo, J. (2014). ‘No One Should Destroy the Forest’: Using photo-based vignette interviews to understand Kenyan teachers’ views of the environment. International Journal of Science Education, 36(17), 2937-2957.
  • Ribeiro, E.M., Ratis, J.R., & Dantas, J. (2018). Analysing processes of conceptualization for students in lessons on substance from the emergence of conceptual profile zones. Chemistry Education Research and Practice, 19(4), 1010-1028.
  • Rivadulla, J.C., García, S., & Martínez, C. (2016). Historia de la Ciencia e ideas de los alumnos como referentes para seleccionar contenidos sobre nutrición. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(1), 53-66.
  • Rodríguez, F., & Blanco, Á. (2016). Diseño y análisis de tareas de evaluación de competencias científicas en una unidad didáctica sobre el consumo de agua embotellada para educación secundaria obligatoria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 279- 300.
  • Romero, A., Aguirre, D., Quesada, A., Abril, A.M., & García, F.J. (2016). ¿Lana o metal? Una propuesta de aprendizaje por indagación para el estudio de las propiedades térmicas de materiales comunes. Revista Electrónica de Enseñanza de las Ciencias, 15(2), 297-311.
  • Rowe, L., Kubalewski, M., Clark, R., Statza, E., Goyne, T., Leach, K., & Peller, J. (2018). Detecting microplastics in soil and sediment in an undergraduate environmental Chemistry laboratory experiment that promotes skill building and encourages environmental awareness. Journal of Chemical Education, 96(2), 323-328.
  • Ryu, M., Nardob, J.E., & Wub, M.Y.M. (2018). An examination of preservice elementary teachers’ representations about chemistry in an intertextuality-modeling-based course. Chemistry Education Research and Practice, 19(3), 681-693.
  • Schnittka, C., & Bell, R. (2011). Engineering design and conceptual change in science: Addressing thermal energy and heat transfer in eighth grade. International Journal of Science Education, 33(13), 1861-1887.
  • Shamuganathana, S., & Karpudewan, M. (2017). Science writing heuristics embedded in green chemistry: a tool to nurture environmental literacy among pre-university students. Chemistry Education Research and Practice, 18(2), 386-396.
  • Skamp, K., Boyes, E., & Stanisstreet, M. (2013). Beliefs and willingness to act about global warming: Where to focus science pedagogy? Science Education, 97(2), 191-217.
  • Smith, M., Love, D.C., Rochman, C.M., & Neff, R.A. (2018). Microplastics in seafood &the implications for human health. Current Environmental Health Reports, 5(3), 375-386.
  • Solbes, J., Ruiz, J.J., & Furió, C. (2010). Debates y argumentación en las clases de física y química. Alambique, 63, 65-75.
  • Souza, K.A., & Alves, A. (2010). Reflexiones sobre el papel de la contextualización en la Enseñanza de las Ciencias. Enseñanza de las Ciencias, 28(2), 275-284.
  • Stender, A.S., Newell, R., Villarreal, E., Swearer, D.F., Bianco, E., & Ringe, E. (2016). Communicating science concepts to individuals with visual impairments using short learning modules. Journal of Chemical Education, 93(12), 2052-2057.
  • Strømme, A.A., & Furberg, A. (2015). Exploring teacher intervention in the intersection of digital resources, peer collaboration and instructional design. Science Education, 99(5), 837-862.
  • Tamburini, F., Kelly, T., Weerapana, E., & Byers, J.A. (2014). Paper to plastics: An interdisciplinary summer outreach project in sustainability. Journal of Chemical Education, 91(10), 1574-1579.
  • Tchoua, R.B., Qin, J., Audus, D.J., Chard, K., Foster, I.T., & De Pablo, J. (2016). Blending education and polymer science: Semiautomated creation of a thermodynamic property database. Journal of Chemical Education, 93(9), 1561-1568.
  • Thunberg, G. (2019). Cambiemos el mundo:#huelgaporelclima. Madrid: Lumen.
  • Ting, J.M., Ricarte, R.G., Schneiderman, D.K., Saba, S.A., Jiang, Y., Hillmyer, M.A., & Lodge, T.P. (2017). Polymer day: Outreach experiments for high school students. Journal of Chemical Education, 94(11), 1629- 1638.
  • Torres, J.M. (2019). Estudio de los flujos de dispersión de los residuos plásticos en el Golfo de Cádiz debido a las corrientes superficiales marinas: una propuesta didáctica para iniciar a los alumnos de 1º ESO en la indagación científica escolar. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16(3), 3501.
  • United Nations (2019). Report of the secretary-General on the 2019 climate action summit and the way forward in 2020. New York: United Nations.
  • Urrútica, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507-511.
  • Varelas, M., Morales, D., Raza, S., Segura, D., Canales, K., & Mitchener, C. (2018). Community organizations’ programming and the development of community science teachers. Science Education, 102(1), 60-84.
  • Vesterinen, V.M., Tolppanen, S., & Aksela, M. (2016). Toward citizenship science education: what students do to make the world a better place? International Journal of Science Education, 38(1), 30-50.
  • Ward, A.M., & Wyllie, G.R. (2019). Bioplastics in the general chemistry laboratory: Building a semester-long research experience. Journal of Chemical Education, 96(4), 668-676.
  • Xu, H., & Talanquer, V. (2013). Effect of the level of inquiry of lab experiments on general chemistry students’ written reflections. Journal of Chemical Education, 90(1), 21-28.
  • Zhang, D., & Campbell, T. (2012). An exploration of the potential impact of the integrated experiential learning curriculum in Beijing, China. International Journal of Science Education, 34(7), 1093-1123.