Microstructural analysis of concretes manufactured with recycled coarse aggregates pre-soaked using different methods

  1. Z. Sánchez-Roldán
  2. I. Valverde-Palacios
  3. I. Valverde-Espinosa
  4. M. Martín-Morales
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2020

Volumen: 70

Número: 339

Tipo: Artículo

DOI: 10.3989/MC.2020.16919 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

Recycled concrete has a microstructure more complex than natural concrete, as it includes new interfacial transition zones, the quality of which is conditioned by the state of humidity of the aggregates used, which in turn will affect the final properties of the concrete. Bearing in mind the greater absorption capacity of recycled aggregates, it is important to improve its properties by means of a treatment method that is capable of reducing the negative effects that this may produce in the new concrete. Therefore, the influence of the pre-soaking method of recycled aggregates on the formation of the microstructure of concretes manufactured with these aggregates is analysed, to determine which treatment is the most effective for the production of concretes for non-structural use. The results show that the microstructure of the evaluated concretes differs according to the treatment method used, the most optimal method being one that uses aggregates without pre-soaking.

Referencias bibliográficas

  • Comisión Europea (2014) COM 445. Comunicación de la comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones. Oportunidades para un uso más eficiente de los recursos en el sector de la construcción. Comisión Europea, Bruselas, (2014).
  • Comisión Europea (2015) COM 614. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones. Cerrar el círculo: Un plan de acción de la UE para la economía circular (COM 614). Comisión Europea, Bruselas, (2014).
  • UEPG (2017) European aggregates association. A sustainable industry for a sustainable Europe. Annual Review 2016-2017. Union Européenne des Producteurs de Granulats. Retreived from http://www.uepg.eu/uploads/Modules/Publications/uepg-ar2016-17_32pages_v10_18122017_pbp_small.PDF.
  • Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. (2018) A review of recycled aggregate in concrete applications (2000-2017). Constr. Build. Mater. 172, 272-292. https://doi.org/10.1016/j.conbuildmat.2018.03.240
  • Ministerio de Fomento (2008) EHE-08. Instrucción de Hormigón Estructual. BOE. 203, 35176-35178.
  • Poon, C.-S.; Shui, Z.; Lam, L.; Fok, H.; Kou, S.-C. (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 34 [1], 31-36. https://doi.org/10.1016/S0008-8846(03)00186-8
  • Etxeberria, M.; Vázquez-Ramonich, E.; Marí, A.R.; Barra de Oliveira, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 37 [5], 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002
  • Thomas García, C.; Setién, J.; Polanco Madrazo, J.A.; Cimentada, A.I.; Medina, C. (2018) Influence of curing conditions on recycled aggregate concrete. Constr. Build. Mater. 172, 618-625. https://doi.org/10.1016/j.conbuildmat.2018.04.009
  • Etxeberria, M. (2004) Experimental study on microstructure and structural behaviour of recycled aggregate concrete. Univ. Politec. Catalunya. 242. http://hdl.handle.net/2117/93470.
  • Li, W.; Xiao, J.; Sun, Z.; Kawashima, S.; Shah, S.P. (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Constr. Build. Mater. 35, 1045-1055. https://doi.org/10.1016/j.conbuildmat.2012.06.022
  • Puertas Maroto, F.; Blanco Varela, M.T.; Palomo Sánchez, Á. (1989) Microestructura del hormigón: influencia sobre sus propiedades. Monografia no 398, Consejo Superior de Investigaciones Científicas.
  • Maso, J.C. (1996) Interfacial Transition Zone in Concrete: state-of-the-art report. RILEM Techical Comm. 108-ICC, Interfaces Cem. Compos. 179. https://doi.org/10.1201/9781482271560 PMCid:PMC1380637
  • Gao, X.F.; Lo, Y.T.; Tam, C.M. (2002) Investigation of micro-cracks and microstructure of high performance lightweight aggregate concrete. Build. Environ. 37 [5], 485-489. https://doi.org/10.1016/S0360-1323(01)00051-8
  • Etxeberria, M.; Vázquez-Ramonich, E.; Marí, A.R. (2006) Microstructure analysis of hardened recycled aggregate concrete. Mag. Concr. Res. 58 [10], 683-690. https://doi.org/10.1680/macr.2006.58.10.683
  • Bonifazi, G.; Capobianco, G.; Serranti, S.; Eggimann, M.; Wagner, E.; Di Maio, F.; Lotfi, S. (2015) The ITZ in concrete with natural and recycled aggregates: Study of microstructures based on image and SEM analysis. In: Proc. 15th Euroseminar Microsc. Appl. to Build. Mater.
  • -308. Retreived from http://resolver.tudelft.nl/uuid:b92471c4-2a8e-4643-9c59-0bca35957025.
  • Xiao, J.; Li, W.; Corr, D.J.; Shah, S.P. (2013) Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cem. Concr. Res. 52, 82-99. https://doi.org/10.1016/j.cemconres.2013.05.004
  • Duan, P.; Shui, Z.; Chen, W.; Shen, C. (2013) Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials. J. Mater. Res. Technol. 2 [1], 52-59. https://doi.org/10.1016/j.jmrt.2013.03.010
  • Tam, V.W.Y.; Tam, C.M. (2007) Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. J. Mater. Sci. 42, 3592-3602. https://doi.org/10.1007/s10853-006-0379-y
  • Wang, R.; Yu, N.; Li, Y. (2020) Methods for improving the microstructure of recycled concrete aggregate: A review. Constr. Build. Mater. 242, 118164. https://doi.org/10.1016/j.conbuildmat.2020.118164
  • Pelufo, M.J.; Domingo Cabo, A.; Ulloa Mayorga, V.A.; Vergara Acuña, N.N. (2009) Analysis of moisture state of recycled coarse aggregate and its influence on compression strength of the concrete. Shell Spat. Struct. IASS. [October], 2932-2940. http://hdl.handle.net/10251/6652.
  • Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N. (2013) Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J. Clean. Prod. 54, 282-288. https://doi.org/10.1016/j.jclepro.2013.05.009
  • Sánchez-Roldán, Z.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2016) Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate. Mater. Constr. 66 [321], e076. https://doi.org/10.3989/mc.2016.01715
  • Tam, V.W.Y.; Gao, X.F.; Tam, C.M. (2005) Microstructural analysis of recycled aggregate concrete produced from twostage mixing approach. Cem. Concr. Res. 35 [6], 1195-1203. https://doi.org/10.1016/j.cemconres.2004.10.025
  • Leite, M.B.; Monteiro, P.J.M. (2016) Microstructural analysis of recycled concrete using X-ray microtomography. Cem. Concr. Res. 81, 38-48. https://doi.org/10.1016/j.cemconres.2015.11.010
  • Thomas García, C.; Setién, J.; Polanco, J.A.; de Brito, J.; Fiol, F. (2019) Micro- and macro-porosity of dry- and saturated-state recycled aggregate concrete. J. Clean. Prod. 211, 932-940. https://doi.org/10.1016/j.jclepro.2018.11.243
  • Zhang, W.; Wang, S.; Zhao, P.; Lu, L.; Cheng, X. (2019) Effect of the optimized triple mixing method on the ITZ microstructure and performance of recycled aggregate concrete. Constr. Build. Mater. 203, 601-607. https://doi.org/10.1016/j.conbuildmat.2019.01.071
  • Sidorova, A.; Vázquez-Ramonich, E.; Barra-Bizinotto, M.; Roa-Rovira, J.J.; Jimenez-Pique, E. (2014) Study of the recycled aggregates nature's influence on the aggregate-cement paste interface and ITZ. Constr. Build. Mater. 68, 677-684. https://doi.org/10.1016/j.conbuildmat.2014.06.076
  • Aligizaki, K.K. (2006) Pore structure of cement-based materials: testing, interpretation and requirements, Taylor & Francis, Abingdon, England, (2006). https://doi.org/10.1201/9781482271959
  • Bravo, M.; Santos Silva, A.; de Brito, J.; Evangelista, L. (2016) Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants. Microsc. Microanal. 22 [1], 149-167. https://doi.org/10.1017/S1431927615015512 PMid:26700727
  • Bonifazi, G.; Palmieri, R.; Serranti, S. (2018) Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Constr. Build. Mater. 169, 835-842. https://doi.org/10.1016/j.conbuildmat.2018.03.048
  • Estefano De Oliveira, M.J.; Barros Oliveira, M.C.; Silveira de Assis, C.; Tavares de Mattos, J. (2004) Petrographic Analysis on Recycled Aggregate-produced Concrete. In: Int RILEM Conf Use Recycl. Mater. Build. Struct. 563-570.
  • Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F.J.; Carrizo, L.; Gisbert, J.; Buj, O. (2011) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng. Geol. 118 [3-4], 110-121. https://doi.org/10.1016/j.enggeo.2011.01.008
  • Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F.J. (2013) Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests. J. Geophys. Eng. 10 [3], 035003. https://doi.org/10.1088/1742-2132/10/3/035003
  • Abbas, A.; Fathifazl, G.; Fournier, B.; Isgor, O.B.; Zavadil, R.; Razaqpur, A.G.; Foo, S. (2009) Quantification of the residual mortar content in recycled concrete aggregates by https://doi.org/10.1016/j.matchar.2009.01.010
  • image analysis. Mater. Charact. 60 [7], 716-728.
  • AEN/CTN 146 (2009) EN 12620:2003+A1. Aggregate for concrete. Áridos para hormigón. AENOR, Madrid. Retreived from https://www.aenor.com/normas-y-libros/buscador-denormas/une?c=N0043155.
  • Agrela, F.; Sánchez de Juan, M.; Ayuso, J.; Geraldes, V.L.; Jiménez, J.R. (2011) Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 25 [10], 3950-3955. https://doi.org/10.1016/j.conbuildmat.2011.04.027
  • Cachim, P.B. (2009) Mechanical properties of brick aggregate concrete. Constr. Build. Mater. 23 [3], 1292-1297. https://doi.org/10.1016/j.conbuildmat.2008.07.023
  • Mas, B.; Cladera, A.; Olmo, T. Del; Pitarch, F. (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr. Build. Mater. 27 [1], 612-622. https://doi.org/10.1016/j.conbuildmat.2011.06.073
  • Evangelista, L.; De Brito, J. (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 29 [5], 397-401. https://doi.org/10.1016/j.cemconcomp.2006.12.004
  • Bear, J.; Bachmat, Y. (1990) Introduction to modeling of transport phenomena in porous media, Kluwer Academic Publishers, Dordrecht, Netherlands (1990), Theory Appl. Transp. Porous Media. Retreived from https://www.springer.com/gp/book/9780792305576. https://doi.org/10.1007/978-94-009-1926-6_2
  • Thomas, J.; Thaickavil, N.N.; Wilson, P.M. (2018) Strength and durability of concrete containing recycled concrete aggregates. J. Build. Eng. 19, 349-365. https://doi.org/10.1016/j.jobe.2018.05.007
  • Huang, B.; Shu, X.; Li, G. (2005) Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cem. Concr. Res. 35 [10], 2008-2013. https://doi.org/10.1016/j.cemconres.2005.05.002
  • López Orozco, J.O. (2004) Porosidad del concreto. (Tesina). Universidad de San Carlos, Guatemala. Recuperado de http://biblioteca.usac.edu.gt/tesis/08/08_2394_C.pdf.
  • Valcuende, M.; Marco, E.; Parra, C.; Serna, P. (2012) Influence of limestone filler and viscosity-modifying admixture on the shrinkage of self-compacting concrete. Cem. Concr. Res. 42 [4], 583-592. https://doi.org/10.1016/j.cemconres.2012.01.001
  • Chen, X.; Wang, G.; Dong, Q.; Zhao, X.; Wang, Y. (2020) Microscopic characterizations of pervious concrete using recycled Steel Slag Aggregate. J. Clean. Prod. 254, 120149. https://doi.org/10.1016/j.jclepro.2020.120149
  • Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. (2004) Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res. 34 [6], 965-971. https://doi.org/10.1016/j.cemconres.2003.11.008
  • Lee, G.C.; Choi, H.B. (2013) Study on interfacial transition zone properties of recycled aggregate by micro-hardness test. Constr. Build. Mater. 40, 455-460. https://doi.org/10.1016/j.conbuildmat.2012.09.114
  • Zheng, C.; Lou, C.; Du, G.; Li, X.; Liu, Z.; Li, L. (2018) Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results Phys. 9, 1317-1322. https://doi.org/10.1016/j.rinp.2018.04.061
  • Bustillo Revuelta, M. (2010) Manual de RCD y áridos reciclados, Fueyo editores, Madrid, (2010).
  • Sidorova, A. (2013) Estudio del efecto de la naturaleza del árido reciclado en la microestructura y propiedades de la zona de transición árido-pasta de cemento. Universitat Politècnica de Catalunya. Retreived from http://hdl.handle.net/10803/129569.
  • Al-bayati, H.K.A.; Tighe, S.L.; Baaj, H. (2016) Effect of Different Treatment Methods on the Interfacial Transition Zone Microstructure to Coarse Recycled Concrete Aggregate. In: Green Technol. Geotechical Mater. Eng. Session, 2016 Conference of the Transportation Association of Canada Toronto. Retreived from https://www.tac-atc.ca/sites/default/files/conf_papers/al-bayati_.pdf.
  • Lo, Y.; Gao, X.F.; Jeary, A.P. (1999) Microstructure of pre-wetted aggregate on lightweight concrete. Build. Environ. 34 [6], 759-764. https://doi.org/10.1016/S0360-1323(98)00060-2