Monitoring an archaeological excavation using photogrammetry and digital elevation models (DEMS)the case study of Barranco León in Orce (Granada, Spain)

  1. Juan José González-Quiñones 1
  2. Juan Francisco Reinoso-Gordo 1
  3. José Antonio Solano-García 2
  4. José Miguel Cámara-Donoso 3
  5. Carlos Alberto León-Robles 1
  6. Gonzalo Linares-Matás 4
  7. Juan Manuel Jiménez-Arenas 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  3. 3 University of Helsinki
    info

    University of Helsinki

    Helsinki, Finlandia

    ROR https://ror.org/040af2s02

  4. 4 University of Cambridge
    info

    University of Cambridge

    Cambridge, Reino Unido

    ROR https://ror.org/013meh722

Revista:
SPAL: Revista de prehistoria y arqueología de la Universidad de Sevilla

ISSN: 1133-4525 2255-3924

Año de publicación: 2022

Número: 31

Páginas: 10-30

Tipo: Artículo

DOI: 10.12795/SPAL.2022.I31.18 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: SPAL: Revista de prehistoria y arqueología de la Universidad de Sevilla

Resumen

En este artículo, describimos y discutimos las tecnologías digitales emergentes utilizadas para la monitorización de las excavaciones del yacimiento arqueológico de Barranco León (Granada, España) entre las campañas de 2017 y 2020. El método implica el uso de los siguientes recursos materiales: una estación total, una cámara de fotos convencional, un ordenador y un programa que integre algoritmos de fotogrametría; referente a los recursos humanos, es necesaria la presencia de un ingeniero durante el primer día de la excavación para establecer el proceso metodológico y un excavador entrenado para llevar a cabo dicho método diariamente. Aquí, presentamos un flujo de trabajo diario para la monitorización de la excavación de un yacimiento arqueológico, seguido de una estimación de los costos y un resumen de los resultados obtenidos. El método presentado se basa en la diferencia de altura de los modelos digitales del terreno (MDT) calculados en sucesivos días utilizando técnicas fotogramétricas. Es un método no invasivo, que requiere menos del 8% del coste total de la excavación y se puede llevar a cabo en menos de 15 minutos. Esto permite que el director de la excavación tenga una visión precisa y una idea visual del proceso de excavación para tomar las decisiones adecuadas. Además, a partir de los resultados obtenidos en el método (diferencias en MDT de cada dos días), se pueden obtener otros resultados derivados como la ubicación exacta de los restos arqueológicos extraídos en función de su tamaño.

Información de financiación

This research has been funded by Consejería de Cultura, Junta de Andalucía, grant number BC.03.032/17 and by FEDER 2020 Operative Program Research Project number A-HUM-016-UGR18. The funder (Consejería de Cultura, Junta de Andalucía) authorizes the publication of these results. JMJ-A belongs to the Junta de Andalucía Research Group HUM-607 and to the Unit of Excellence “Archaeometrical Studies. Inside the Artefacts and Ecofacts” (University of Granada, Spain).

Financiadores

Referencias bibliográficas

  • Agustí, J., Blain, H.A., Lozano-Fernández, I., Piñero, P., Oms, O., Furió, M., Blanco, A., López-García, J.M. and Sala, R. (2015) “Chronological and environmental context of the first hominin dispersal into Western Europe: The case of Barranco León (Guadix-Baza Basin, SE Spain)”, Journal of Human Evolution, 87, pp. 87–94. https://doi.org/10.1016/j.jhevol.2015.02.014
  • Anadón, P., Oms, O., Riera, V. and Julià, R. (2015) “The geochemistry of biogenic carbonates as a paleoenvironmental tool for the Lower Pleistocene Barranco León sequence (BL-5D, Baza Basin, Spain)”, Quaternary International, 389, pp. 70–83. https://doi.org/10.1016/j.quaint.2014.09.062
  • Armstrong, B.J., Blackwood, A.F., Penzo-Kajewski, P., Menter, C.G. and Herries, A.I.R. (2018) “Te-rrestrial laser scanning and photogrammetry techniques for documenting fossil-bearing palaeokarst with an example from the Drimolen Palaeocave System, South Africa”, Archaeo-logical Prospection, 25 (1), pp. 45–58. https://doi.org/10.1002/arp.1580
  • Baird. J.A. (2014) “Towards an archaeology of archaeological archives”, Archaeological Review from Cambridge 29 (2), pp. 14-32.
  • Barrile, V., Bilotta, G. and Nunnari, A. (2017) “3D modeling with photogrammetry by UAVs and model quality verification”, ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., IV-4/W4, pp. 129-134. https://doi.org/10.5194/isprs-annals-IV-4-W4-129-2017
  • Blain, H. A., Lozano-Fernández, I., Agustí, J., Bailon, S., Menéndez Granda, L., Espígares Ortiz, M. P., Ros-Montoya, S., Jiménez Arenas, J. M., Toro-Moyano, I., Martínez-Navarro, B. and Sala, R. (2016) “Refining upon the climatic background of the Early Pleistocene hominid settlement in western Europe: Barranco León and Fuente Nueva-3 (Guadix-Baza Basin, SE Spain)”, Quaternary Science Reviews, 144, pp. 132–144. https://doi.org/10.1016/j.quascirev.2016.05.020
  • Bohil, C. J., Alicea, B. and Biocca, F. A. (2011) “Virtual reality in neuroscience research and thera-py”, Nature Reviews Neuroscience 12 (12), pp. 752–762. https://doi.org/10.1038/nrn3122
  • Brown, D. (1976) “The bundle adjustment- Progress and prospects”, XIII Congress of the ISPRS. International Archives of Photogrammetry, 21 (3), 33.
  • Bruckheimer, E., Rotschild, C., Dagan, T., Amir, G., Kaufman, A., Gelman, S. and Birk, E. (2016) “Com-puter-generated real-time digital holography: First time use in clinical medical imaging”, European Heart Journal Cardiovascular Imaging, 17 (8), pp. 845–849. https://doi.org/10.1093/ehjci/jew087
  • Callieri, M., Dell’Unto, N., Dellepiane, M., Scopigno, R., Soderberg, B and Larsson, L. (2011) “Documentation and Interpretation of an Archeological Excavation: an Experience with Dense Stereo Reconstruction Tools”, The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST. Goslar: Eurographics Association, pp. 33-40.
  • Carrocera Fernández, E., Díaz Nosty, B. and Piedra, G. S. (2007) “Desarrollo de los trabajos excavación arqueológica y seguimiento arqueológico de las obras de restauración de Santa María del Naranco (Oviedo)”, Excavaciones arqueológicas en Asturias 2003-2006, pp. 331-338.
  • Castillo, A. D., Nicolau, A. C., Puchol, O. G. and Ruiz, P. E. (2017) “3D environment for the analysis and virtual reconstruction of the archaeological fieldworks at Cocina Cave (Dos Aguas, Valencia, Spain)”, Virtual Archaeology Review, 8 (17), pp. 75–83. https://doi.org/10.4995/VAR.2017.7028
  • Costa-Cabral, M. C. and Burges, S. J. (1994) “Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas”, Water Resources Research, 30 (6), pp. 1681–1692. https://doi.org/10.1029/93WR03512
  • De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne, M., Laloo, P. and De Clercq, W. (2014) “On introducing an image-based 3D reconstruction method in archaeological excavation practice”, Journal of Archaeological Science, 41, pp. 251–262. https://doi.org/10.1016/J.JAS.2013.08.020
  • Dhonju, H.K., Xiao, W., Sarhosis, V., Mills, J.P., Wilkinson, S., Wang, Z., Thapa, L. and Panday, U.S. (2017) “Feasibility study of low-cost image-based heritage documentation in Nepal”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42 (2W3), pp. 237–242. https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W3-237-2017
  • Eisenbeiss, H. (2009). UAV photogrammetry. Doctoral Thesis. University of Technology Dresden https://doi.org/10.3929/ethz-a-005939264
  • Elnima, E. (2015) “A solution for exterior and relative orientation in photogrammetry, a genetic evolution approach”, Journal of King Saud University Engineering Sciences, 27 (1), pp. 108–113.
  • Enríquez, C., Jurado, J.M., Bailey, A., Callén, D., Collado, M.J., Espina, G., Marroquín, P., Oliva, E., Osla, E., Ramos, M. I., Sarceño, S. and Feito, F. R. (2020) “The UAS-Based 3D Image Characterization of Mozarabic Church Ruins in Bobastro (Malaga), Spain”, Remote Sensing, 12 (15), 2377. https://doi.org/10.3390/RS12152377
  • Fischler, M.A. and Bolles, R.C. (1981) “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 24 (6), pp. 381–395. https://doi.org/10-.1145/358669.358692
  • Fisher, M.L. (2013) “Fire detection with a frame-less vision sensor working in the NIR band”, Advances in forest fire research 4 (4), pp. 23–30.
  • Gaulton, R., Taylor, J. and Watkins, N. (2015) “Unmanned aerial vehicles for pre-harvest biomass estimation in willow (Salix spp.) coppice plantations”, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences GeoUAV, September 2014, 1–4. Available online: https://geouav.teledetection.fr/papers/GEOSPATIAL_WEEK_2015_284.pdf
  • Gibert, J., Gilbert, L., Iglesias, A. and Maestro, E. (1998) “Two ’Oldawan’ assemblages in the Plio-Pleistocene deposits of the Orce region, southeast Spain”, Antiquity, 72 (275), pp. 17–25.
  • Gil-Docampo, M., Peña-Villasenín, S. and Ortiz-Sanz, J. (2020) “An accessible, agile and low-cost workflow for 3D virtual analysis and automatic vector tracing of engravings: Atlantic rock art analysis”, Archaeological Prospection, 27 (2), pp. 153–168. https://doi.org/10.1002/arp.1760
  • González-Quiñones, J., Reinoso-Gordo, J., León-Robles, C., García-Balboa, J., Ariza-López, F. (2018) “Variables Influencing the Accuracy of 3D Modeling of Existing Roads Using Consumer Cameras in Aerial Photogrammetry”, Sensors, 18, 3880. https://doi.org/10.3390/s18113880
  • Goodale, C., Aber, J. and Ollinger, S. (1998) “Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model”, Climate Research, 10 (1), pp. 35–49. https://doi.org/10.3354/cr010035
  • Granshaw, S. I. (1980) “Bundle adjustment methods in engineering photogrammetry”, The Photogrammetric Record, 10 (56), pp. 181–207. https://doi.org/10.1111/j.1477-9730.1980.tb00020.x
  • Hartley, R. and Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.
  • Hast, A., Nysjö, J. and Marchetti, A. (2013) “Optimal RANSAC-Towards a Repeatable Algorithm for Finding the Optimal Set”, Journal of WSCG, 21 (1), pp. 21–30.
  • Heipke, C. (1997) “Automation of interior, relative, and absolute orientation”, Photogrammetry and Remote Sensing, 52(1), pp. 1–19.
  • Henestrosa, Á.R., Román Punzón, J.M., Alcaide, M.M. and Montes, P.R. (2022) “The Implementation of Digital Techniques for Archaeological Documentation in the Roman Villa of Salar (Granada)”, Vegueta, 22 (1), pp. 113–136. https://doi.org/10.51349/VEG.2022.1.07
  • Hoffmeister, D., Zellmann, S., Pastoors, A., Kehl, M., Cantalejo, P., Ramos, J., Weniger, G. C. and Bareth, G. (2016) “The Investigation of the Ardales Cave, Spain – 3D Documentation, Topographic Analyses, and Lighting Simulations based on Terrestrial Laser Scanning”, Archaeological Prospection, 23 (2), pp. 75–86. https://doi.org/10.1002/arp.1519
  • Hollander, R. J. M. and Hanjalic, A. (2007) “A Combined RANSAC-Hough Transform Algorithm for Fundamental Matrix Estimation”, 18th British Machine Vision Conference http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.702
  • Hsieh, Y.C., Chan, Y.C. and Hu, J.C. (2016) “Digital elevation model differencing and error estimation from multiple sources: A case study from the Meiyuan Shan landslide in Taiwan”, Remote Sensing, 8 (3), 199. https://doi.org/10.3390/rs8030199
  • Kingsland, K. (2020) “Comparative analysis of digital photogrammetry software for cultural heritage”, Digital Applications in Archaeology and Cultural Heritage, 18, e00157. https://doi.org/10.1016/j.daach.2020.e00157
  • León-Robles, C.A., Reinoso-Gordo, J.F. and González-Quiñones, J.J. (2019) “Heritage building information modeling (H-BIM) applied to a stone bridge”, ISPRS International Journal of Geo-Information, 8 (3), 121. https://doi.org/10.3390/ijgi8030121
  • Leutenegger, S., Chli, M. and Siegwart, R.Y. (2011) “BRISK: Binary Robust invariant scalable keypoints”, Proceedings of the IEEE International Conference on Computer Vision. Barcelona: IEEE, pp. 2548–2555. https://doi.org/10.1109/ICCV.2011.6126542
  • López, J.A.B., Jiménez, G.A., Romero, M.S., García, E.A., Martín, S.F., Medina, A.L. and Guerrero, J.A.E. (2016) “3D modelling in archaeology: The application of Structure from Motion methods to the study of the megalithic necropolis of Panoria (Granada, Spain)”, Journal of Archaeological Science: Reports, 10, pp. 495–506. https://doi.org/10.1016/J.JASREP.2016.11.022
  • Lourakis, M.I.A. and Argyros, A.A. (2009) “SBA: A Software Package for Generic Sparse Bundle Adjustment”, ACM Transactions on Mathematical Software, 36 (1), pp. 1–30. https://doi.org/10.1145/1486525.1486527
  • Lowe, D.G. (2004) “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision, 60 (2), pp. 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  • Maldonado-Garrido, E., Piñero, P. and Agustí, J. (2020) “A catalogue of the vertebrate fossil record from the Guadix-Baza Basin (SE Spain)”, Spanish Journal of Palaeontology, 32 (1), pp. 207-236. https://doi.org/10.7203/sjp.32.1.17040
  • Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.J., García-Ferrer, A. and Pérez-Porras, F.J. (2018) “Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points”, International Journal of Applied Earth Observation and Geoinformation, 72, pp. 1–10. https://doi.org/10.1016/j.jag.2018.05.015
  • Martínez-Fernández, A., Benito-Calvo, A., Campaña, I., Ortega, A.I., Karampaglidis, T., Bermúdez de Castro, J. M. and Carbonell, E. (2020) “3D monitoring of Paleolithic archaeological excavations using terrestrial laser scanner systems (Sierra de Atapuerca, Railway Trench sites, Burgos, N Spain)”, Digital Applications in Archaeology and Cultural Heritage 19, e00156.
  • Martínez-Navarro, B., Palmqvist, P., Madurell-Malapeira, J., Ros-Montoya, M., Espigares, P., Torregrosa, V. and Pérez-Claros, J. A. (2010) “La fauna de grandes mamíferos de Fuente Nueva-3 y Barranco León-5: estado de la cuestión”, in Martínez Navarro, B., Agustí i Ballester, J. y Toro-Moyano, I. (coords), Ocupaciones Humanas En El Pleistoceno Inferior y Medio de La Cuenca de Guadix-Baza. Sevilla: Junta de Andalucía, pp. 197–236.
  • Martínez-Navarro, B., Madurell-Malapeira, J., Ros-Montoya, S., Espigares, M.P., Medin, T., Hortolà, P. and Palmqvist, P. (2015) “The Epivillafranchian and the arrival of pigs into Europe”, Quaternary International, 389, pp. 131–138. https://doi.org/10.1016/j.quaint.2015.09.039
  • Masson-MacLean, E., O’Driscoll, J., McIver, C. and Noble, G. (2021) “Digitally Recording Excavations on a Budget: A (Low-Cost) DIY Approach from Scotland”, Journal of Field Archaeology, 46 (8), pp. 595–613.
  • Maune, D. F. (2007) Digital elevation model technologies and applications: the DEM users manual. Bethesda: American Society for Photogrammetry and Remote Sensing, pp. 99-118.
  • Mesa-Mingorance, J.L. and Ariza-López, F.J. (2020) “Accuracy assessment of digital elevation models (DEMs): A critical review of practices of the past three decades”, Remote Sensing, 12 (16), 2630. https://doi.org/10.3390/RS12162630
  • Mikhail, E., Bethel, J. and McGlone, Ch. (2001) Introduction to modern photogrammetry. New York: John Wiley and Sons.
  • Nagendran, S.K., Tung, W.Y. and Mohamad Ismail, M.A. (2018) “Accuracy assessment on low altitude UAV-borne photogrammetry outputs influenced by ground control point at different altitud”, IOP Conference Series: Earth and Environmental Science, 169, 012031. https://doi.org/10.1088/1755-1315/169/1/012031
  • Novo, A., Lorenzo, H., Rial, F.I. and Solla, M. (2010) “From pseudo-3D to full-resolution GPR imaging in archaeology: A complex Roman site in Lugo, Spain”, Proceedings of the 13th Internarional Conference on Ground Penetrating Radar, pp. 1-6. https://doi.org/10.1109/ICGPR.2010.5550185
  • Obdržálek, D., Basovník, S., Mach, L. and Mikulík, A. (2010) “Detecting scene elements using maximally stable colour regions”, Communications in Computer and Information Science, 82, pp. 107–115. https://doi.org/10.1007/978-3-642-16370-8_10
  • Oms, O., Anadón, P., Agustí, J. and Julià, R. (2011) “Geology and chronology of the continental Pleistocene archeological and paleontological sites of the Orce area (Baza basin, Spain)”, Quaternary International, 243 (1), pp. 33–43. https://doi.org/10.1016/j.quaint.2011.03.048
  • Oms, O., Parés, J.M., Martínez-Navarro, B., Agustí, J., Toro, I., Martínez-Fernández, G. and Turq, A. (2000) “Early human occupation of western Europe: Paleomagnetic dates for two paleolithic sites in Spain”, Proceedings of the National Academy of Sciences of the United States of America, 97 (19), pp. 10666–10670. https://doi.org/10.1073/pnas.180319797
  • Parsons, T.D., Riva, G., Parsons, S., Mantovani, F., Newbutt, N., Lin, L., Venturini, E. and Hall, T. (2017) “Virtual reality in pediatric psychology”, Pediatrics, 140 (2), pp. S86–S91. https://doi.org/10.1542/peds.2016-1758I
  • Parsons, T.D. and Rizzo, A.A. (2008) “Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: A meta-analysis”, Journal of Behavior Therapy and Experimental Psychiatry, 39 (3), pp. 250–261. https://doi.org/10.1016/j.jbtep.2007.07.007
  • Peng, F., Lin, S.C., Guo, J., Wang, H. and Gao, X. (2017) “The Application of SfM Photogrammetry Software for Extracting Artifact Provenience from Palaeolithic Excavation Surfaces” Journal of Field Archaeology, 42 (4), pp. 326-336, https://doi.org/10.1080/00934690.2017.1338118
  • Portalésa, C., Alonso-Monasteriob, P. and Viñalsc, M. J. (2017) “3D virtual reconstruction and visualisation of the archaeological site Castellet de Bernabé (Llíria, Spain)”, Virtual Archaeology Review, 8 (16), pp. 72–85. https://doi.org/10.4995/VAR.2017.5890
  • Reinoso-Gordo, J.F., Barsky, D., Serrano-Ramos, A., Solano-García, J.A., León-Robles, C. A., Luzón-González, C., Titton, S. and Jiménez-Arenas, J.M. (2020) “Walking among mammoths. remote sensing and virtual reality supporting the study and dissemination of pleistocene archaeological sites: The case of fuente nueva 3 in Orce, Spain”, Sustainability, 12 (11), 4785. https://doi.org/10.3390/su12114785
  • Reinoso, J.F. (2010) “A priori horizontal displacement (HD) estimation of hydrological features when versioned DEMs are used”, Journal of Hydrology, 384 (1–2), pp. 130–141. https://doi.org/10.1016/j.jhydrol.2010.01.017
  • Repola, L., Scotto di Carlo, N., Signoretti, D. and Leidwanger, J. (2018) “Virtual simulation of a late antique shipwreck at Marzamemi, Sicily: Integrated processes for 3D documentation, analysis and representation of underwater archaeological data”, Archaeological Prospection, 25(2), pp. 99–109. https://doi.org/10.1002/arp.1592
  • Rinaudo, F., Chiabrando, F., Lingua, A. and Spanò, A. (2012) “Archeological site monitoring: UAV Photogrammetry can be an answer”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B5), pp. 583–588.
  • Rublee, E., Rabaud, V., Konolige, K. and Bradski, G. (2011) “ORB: An efficient alternative to SIFT or SURF”, 2011 International Conference on Computer Vision, 2564–2571. https://doi.org/10.1109/ICCV.2011.6126544
  • Sánchez-Bandera, C., Oms, O., Blain, H. A., Lozano-Fernández, I., Bisbal-Chinesta, J.F., Agustí, J., Saarinen, J., Fortelius, M., Titton, S., Serrano-Ramos, A., Luzón, C., Solano-García, J., Barsky, D. and Jiménez-Arenas, J.M. (2020) “New stratigraphically constrained palaeoenvironmental reconstructions for the first human settlement in Western Europe: The Early Pleistocene herpetofaunal assemblages from Barranco León and Fuente Nueva 3 (Granada, SE Spain)”, Quaternary Science Reviews, 243, 106466. https://doi.org/10.1016/j.quascirev.2020.106466
  • Sancho Gómez-Zurdo, R., Galán Martín, D., González-Rodrigo, B., Marchamalo Sacristán, M. and Martínez Marín, R. (2021) “Aplicación de la fotogrametría con drones al control deformacional de estructuras y terreno”, Informes de La Construcción, 73 (561), e379. https://doi.org/10.3989/IC.77867
  • Snavely, N., Seitz, S. M. and Szeliski, R. (2008) “Modeling the World from Internet Photo Collections”, International Journal of Computer Vision, 80 (2), pp. 189–210. https://doi.org/10.1007/s11263-007-0107-3
  • Steen-McIntyre, V., Fryxell, R. and Malde, H. E. (1981) “Geologic evidence for age of deposits at Hueyatlaco archeological site, Vasequillo, Mexico”, Quaternary Research, 16 (1), pp. 1–17. https://doi.org/10.1016/0033-5894(81)90124-1
  • Titton, S., Barsky, D., Bargalló, A., Serrano-Ramos, A., Vergès, J.M., Toro-Moyano, I., Sala-Ramos, R., Solano, J.G. and Arenas, J.M.J. (2020) “Subspheroids in the lithic assemblage of Barranco León (Spain): Recognizing the late Oldowan in Europe”, PLoS ONE, 15 (1), e0228290. https://doi.org/10.1371/journal.pone.0228290
  • Titton, S., Oms, O., Barsky, D., Bargalló, A., Serrano-Ramos, A., Solano-Garca, J., Sánchez-Bandera, C., Yravedra, J., Blain, H.-A., Toro-Moyano, I., Jiménez-Arenas, J.M. and Sala-Ramos, R. (2021) “Oldowan stone knapping and percussive activities on a raw material reservoir deposit 1.4 million years ago at Barranco León (Orce, Spain)”, Archaeological and Anthropological Sciences, 13, 108. https://doi.org/10.1007/s12520-021-01353-w
  • Toro-Moyano, I., Martínez-Navarro, B., Agustí, J., Souday, C., Bermúdez de Castro, J.M., Martinón-Torres, M., Fajardo, B., Duval, M., Falguères, C., Oms, O., Parés, J.M., Anadón, P., Julià, R., García-Aguilar, J.M., Moigne, A.M., Espigares, M.P., Ros-Montoya, S. and Palmqvist, P. (2013) “The oldest human fossil in Europe, from Orce (Spain)”, Journal of Human Evolution, 65 (1), pp. 1–9. https://doi.org/10.1016/j.jhevol.2013.01.012
  • Triggs, B., McLauchlan, P.F., Hartley, R.I. and Fitzgibbon, A.W. (2000) “Bundle Adjustment — A Modern Synthesis”, in Triggs, B., Zisserman, A., Szeliski, R. (eds) Vision Algorithms: Theory and Practice. Berlin: Springer, pp. 298-372. https://doi.org/10.1007/3-540-44480-7_21
  • Waagen, J. (2019) “New technology and archaeological practice. Improving the primary archaeological recording process in excavation by means of UAS photogrammetry”, Journal of Archaeological Science, 101, pp. 11–20. https://doi.org/10.1016/J.JAS.2018.10.011
  • Wang, S., Wang, Y., Hu, Q., Li, J. and Ai, M. (2019) “Unmanned aerial vehicle and structure-from-motion photogrammetry for three-dimensional documentation and digital rubbing of the Zuo River Valley rock paintings”, Archaeological Prospection, 26(3), pp. 265–279. https://doi.org/10.1002/arp.1739
  • Wessling, R., Maurer, J. and Krenn-leeb, A. (2014) “Structure from Motion for Systematic Single Surface Documentation of Archaeological Excavations”, Proceedings of the 18th International Conference on Cultural Heritage and New Technologies (CHNT 18), pp. 1-13
  • Yravedra, J., Solano, J. A., Herranz-Rodrigo, D., Linares-Matás, G. J., Saarinen, J., Rodríguez-Alba, J. J., Titton, S., Serrano-Ramos, A., Courtenay, L. A., Mielgo, C., Luzón, C., Cámara, J., Sánchez-Bandera, C., Montilla, E., Toro-Moyano, I., Barsky, D., Fortelius, M., Agusti, J., Blain, H.-A., Oms, O. and Jiménez-Arenas, J. M. (2022) “Unravelling Hominin Activities in the Zooarchaeological Assemblage of Barranco León (Orce, Granada, Spain)”, Journal of Paleolithic Archaeology 5 (1), pp. 1–33. https://doi.org/10.1007/S41982-022-00111-1
  • Zhang, W. and Montgomery, D.R. (1994) “Digital elevation model grid size, landscape representation, and hydrologic simulations”, Water Resources Research, 30 (4), pp. 1019–1028. https://doi.org/10.1029/93WR03553