Structural health monitoringby using transmissibility

  1. ZHOU, YUN LAI
Dirigida por:
  1. Ricardo Perera Velamazán Director/a

Universidad de defensa: Universidad Politécnica de Madrid

Fecha de defensa: 13 de noviembre de 2015

Tribunal:
  1. Amadeo Benavent Climent Presidente
  2. Juan José Benito Secretario/a
  3. Rafael Gallego Sevilla Vocal
  4. Manuel Luis Romero García Vocal
  5. Nuno Maia Vocal

Tipo: Tesis

Resumen

El control del estado en el que se encuentran las estructuras ha experimentado un gran auge desde hace varias décadas, debido a que los costes de rehabilitación de estructuras tales como los oleoductos, los puentes, los edificios y otras más son muy elevados. En las últimas dos décadas, se han desarrollado una gran cantidad de métodos que permiten identificar el estado real de una estructura, basándose en modelos físicos y datos de ensayos. El ensayo modal es el más común; mediante el análisis modal experimental de una estructura se pueden determinar parámetros como la frecuencia, los modos de vibración y la amortiguación y también la función de respuesta en frecuencia de la estructura. Mediante estos parámetros se pueden implementar diferentes indicadores de daño. Sin embargo, para estructuras complejas y grandes, la implementación de metodologías basadas en la función de respuesta en frecuencia requeriría realizar hipótesis sobre la fuerza utilizada para excitar la estructura. Dado que el análisis modal operacional utiliza solamente las señales de respuesta del sistema para extraer los parámetros dinámicos estructurales y, por tanto, para evaluar el estado de una estructura, el uso de la transmisibilidad sería posible. En este sentido, dentro del análisis modal operacional, la transmisibilidad ha concentrado mucha atención en el mundo científico en la última década. Aunque se han publicado muchos trabajos sobre el tema, en esta Tesis se proponen diferentes técnicas para evaluar el estado de una estructura basándose exclusivamente en la transmisibilidad. En primer lugar, se propone un indicador de daño basado en un nuevo parámetro, la coherencia de transmisibilidad; El indicador se ha valido mediante resultados numéricos y experimentales obtenidos sobre un pórtico de tres pisos. En segundo lugar, la distancia de Mahalanobis se aplica sobre la transmisibilidad como procedimiento para detectar variaciones estructurales provocadas por el daño. Este método se ha validado con éxito sobre una viga libre-libre ensayada experimentalmente. En tercer lugar, se ha implementado una red neuronal basada en medidas de transmisibilidad como metodología de predicción de daño sobre una viga simulada numéricamente. ABSTRACT Structural health monitoring has experienced a huge development from several decades ago since the cost of rehabilitation of structures such as oil pipes, bridges and tall buildings is very high. In the last two decades, a lot of methods able to identify the real stage of a structure have been developed basing on both models and experimental data. Modal testing is the most common; by carrying out the experimental modal analysis of a structure, some parameters, such as frequency, mode shapes and damping, as well as the frequency response function of the structure can be obtained. From these parameters, different damage indicators have been proposed. However, for complex and large structures, any frequency domain approach that relies on frequency response function estimation would be of difficult application since an assumption of the input excitations to the system should be carried out. Operational modal analysis uses only output signals to extract the structural dynamic parameters and, therefore, to identify the structural stage. In this sense, within operational modal analysis, transmissibility has attracted a lot of attention in the scientific field in the last decade. In this work new damage detection approaches based on transmissibility are developed. Firstly, a new theory of transmissibility coherence is developed and it is tested with a three-floor-structure both in simulation and in experimental data analysis; secondly, Mahalanobis distance is taken into use with the transmissibility, and a free-free beam is used to test the approach performance; thirdly, neural networks are used in transmissibility for structural health monitoring; a simulated beam is used to validate the proposed method.