Endotelio corneal humano derivado de células madre mesenquimales.Revisión de la literatura

  1. R. Martínez-Castillo
  2. M. C. González Gallardo
  3. I. J. Garzón Bello
Revista:
Actualidad médica

ISSN: 0365-7965

Año de publicación: 2021

Tomo: 106

Número: 814

Páginas: 280-290

Tipo: Artículo

DOI: 10.15568/AM.2021.814.REV02 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Actualidad médica

Resumen

Antecedentes y Objetivo: En la presente revisión se expondrán las principales fuentes de células madre mesenquimales utilizadas para la generación de endotelio corneal humano artificial o en sus usos como terapia regenerativa. Así mismo, los distintos modelos de diferenciación sugeridos por los autores a lo largo de la historia; los marcadores celulares o fisiológicos de los que se han servido para caracterizar las células diferenciadas y se describirá la potencialidad traslacional de dichas células a patologías del endotelio corneal mediante las técnicas de las que se han servido para su implantación o trasplante. Material y métodos: Revisión narrativa de publicaciones de diferenciación de células madre mesenquimales a endotelio corneal humano o de otras aplicaciones de estas células como terapia regenerativa en modelos de daño endotelial corneal. Resultados: Un total de seis trabajos utilizaron células madre mesenquimales en diferenciación o regeneración de endotelio corneal, de los cuales cuatro utilizaron células provenientes de cordón umbilical. En cuatro de estos estudios se diseñó un protocolo de diferenciación distinto. Los autores coincidieron en los marcadores de diferenciación ATP1A1, COL8A2, PITX2 y ZO-1. Conclusiones: Si bien son pocos los ensayos clínicos publicados en materia de endotelio corneal humano que utilizan dichas células; el potencial de regeneración y de diferenciación de las MSC junto con el desarrollo que ha experimentado la Ingeniería Tisular, hace que se postulen como el futuro de la terapia sustitutiva.

Referencias bibliográficas

  • Bahar I, Kaiserman I, McAllum P, Slomovic A, Rootman D. Comparison of posterior lamellar keratoplasty techniques to penetrating keratoplasty. Ophthalmology. 2008 Sep;115(9):1525-33. DOI: https://doi.org/10.1016/j.ophtha.2008.02.010
  • Baksh D, Song L, Tuan Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004 Jul-Sep;8(3):301-16. DOI: https://doi.org/10.1111/j.1582-4934.2004.tb00320.x.
  • Balachandran C, Ham L, Verschoor CA, Ong TS, van der Wees J, Melles Spontaneous Corneal Clearance Despite Graft Detachment in Descemet Membrane Endothelial Keratoplasty. Am J Ophthalmol. 2009 Aug;148(2):227- 234.e1. DOI: https://doi.org/10.1016/j.ajo.2009.02.033
  • Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Ra- ffa GA, Merkhofer RM, et Novel Identity and Functional Markers for Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci. 2016 May;57(6):2749–62. DOI: https://dx.doi.org/10.1167%2Fiovs.15-18826
  • Baydoun L, Tong CM, Tse WW, Chi H, Parker J, Ham L, et Endothelial cell density after descemet membrane endothelial keratoplasty: 1 to 5-year follow-up. Am J Ophthalmol. 2012 Oct;154(4):762–3. DOI: https://doi.or-g/10.1016/j.ajo.2012.06.025
  • Chaurasia S, Price FW, Gunderson L, Price Desce- met’s membrane endothelial keratoplasty: clinical results of single versus triple procedures (combined with cataract surgery). Ophthalmology. 2014 Feb;121(2):454–8. DOI: https://doi.org/10.1016/j.ophtha.2013.09.032
  • Dirisamer M, Dapena I, Ham L, van Dijk K, Oganes O, Frank LE, et al. Patterns of Corneal Endothelialization and Corneal Clearance After Descemet Membrane Endothelial Keratoplasty for Fuchs Endothelial Dystrophy. Am J Ophthalmol. 2011 Oct;152(4):543-555.e1. DOI: https://doi.org/10.1016/j.ajo.2011.03.031
  • Dirisamer M, Ham L, Dapena I, van Dijk K, Melles Descemet Membrane Endothelial Transfer: “Free-Floating” Donor Descemet Implantation as a Potential Alternative to “Keratoplasty.” Cornea. 2012 Feb;31(2):194–7. DOI: https://doi.org/10.1097/ico.0b013e31821c9afc
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Thera- py position statement. Cytotherapy. 2006 Jan;8(4):315-7. DOI: https://doi.org/10.1080/14653240600855905
  • Duman F, Kosker M, Suri K, Reddy JC, Ma JF, Hammersmith KM, et Indications and outcomes of corneal transplantation in geriatric patients. Am J Ophthalmol. 2013 Sep;156(3):600-607.e2. DOI: https://doi.org/10.1016/j. ajo.2013.04.034
  • Eghrari AO, Gottsch Fuchs’ corneal dystrophy. Expert Rev Ophthalmol. 2010 Apr;5(2):147–59. DOI: https://doi.org/10.1586/eop.10.8
  • Feiertag E, Maassen J, Mueller A, Harnisch E, Skazik-Voogt C, Engelmann K, et al. From Cord to Eye: Wharton Jelly-Derived Stem Cells Differentiate Into Corneal Endothelial-Like Cornea. 2020 Jul;39(7):877–85. DOI: https://doi.org/10.1097/ico.0000000000002319
  • Friedenstein AJ, Chailakhyan RK, Latsinik N V, Panasyuk AF, Keiliss-Borok I Stromal cells responsible for trans- ferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974 Apr;17(4):331–40. DOI: https://doi.org/10.1097/00007890-197404000-00001
  • Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016 Feb;134(2):167–73. DOI: https://doi.org/10.1001/jamaophthalmol.2015.4776
  • Gutermuth A, Maassen J, Harnisch E, Kuhlen D, Sauer-Budge A, Skazik-Voogt C, et Descemet’s Membrane Biomimetic Microtopography Differentiates Human Mesenchymal Stem Cells Into Corneal Endothelial-Like Cells. Cornea. 2019 Jan;38(1):110–9. DOI: https://doi.org/10.1097/ico.0000000000001765
  • Hatou S, Shimmura Review: corneal endothelial cell derivation methods from ES/iPS cells. Inflamm Regen. 2019 Oct 3;39:19. DOI: https://doi.org/10.1186/s41232-019-0108-y
  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5. DOI: https://doi.org/10.1080/14653240500319234
  • Joyce NC, Harris DL, Markov V, Zhang Z, Saitta Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis. 2012 Mar;18:547-64.
  • Joyce Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012 Feb;95(1):16–23. DOI: https://doi.org/10.1016/j.exer.2011.08.014
  • Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N Engl J Med. 2018 Mar 15;378(11):995– 1003. DOI: https://doi.org/10.1056/nejmoa1712770
  • Liu X-W, Zhao J-L. [Transplantation of autologous bone marrow mesenchymal stem cells for the treatment of corneal endothelium damages in rabbits]. Zhonghua Yan Ke Za 2007 Jun;43(6):540–5.
  • Markov V, Kusumi K, Tadesse MG, William DA, Hall DM, Lounev V, et Identification of Cord Blood-Derived Mesenchymal Stem/stromal Cell Populations with Distinct Growth Kinetics, Differentiation Potentials, and Gene Expression Profiles. Stem Cells Dev. 2007 Feb;16(1):53–74. DOI: https://doi.org/10.1089/scd.2006.0660
  • Mimura T, Shimomura N, Usui T, Noda Y, Kaji Y, Yamgami S, et Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res. 2003 Jun;76(6):745–51. DOI: https://doi.org/10.1016/s0014-4835(03)00057-5
  • Mimura T, Yamagami S, Usui T, Ishii Y, Ono K, Yokoo S, et Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp Eye Res. 2005 Feb;80(2):149–57. DOI: https://doi.org/10.1016/j.exer.2004.08.021
  • Mohay J, Wood TO, McLaughlin Long-term evaluation of corneal endothelial cell transplantation. Trans Am Ophthalmol Soc. 1997 Jan;95:131–48; discussion 149-51. DOI: https://doi.org/10.1016/0042-6989(95)90357-7
  • Nagymihály R, Veréb Z, Albert R, Sidney L, Dua H, Hopkinson A, et Cultivation and characterisation of the surface markers and carbohydrate profile of human corneal endothelial cells. Clin Experiment Ophthalmol. 2017 Jul;45(5):509–19. DOI: https://doi.org/10.1111/ceo.12903
  • Nancarrow-Lei R, Mafi P, Mafi R, Khan A Systemic Review of Adult Mesenchymal Stem Cell Sources and their Multilineage Differentiation Potential Relevant to Musculoskeletal Tissue Repair and Regeneration. Curr Stem Cell Res Ther. 2017 Nov;12(8):601–10. DOI: https://doi.org/ 10.2174/1574888X12666170608124 303
  • Patel S V, Bachman LA, Hann CR, Bahler CK, Fautsch Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci. 2009 May;50(5):2123–31. DOI: https://doi.org/10.1167/iovs.08-2653
  • Peh GSL, Beuerman RW, Colman A, Tan DT, Mehta Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011 Apr 27;91(8):811–9. DOI: https://doi.org/10.1097/tp.0b013e3182111f01
  • Peh GSL, Toh K-P, Wu F-Y, Tan DT, Mehta Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLoS One. 2011 Dec;6(12):e28310. DOI: https://doi.org/10.1371/journal.pone.0028310
  • Polse KA, Brand RJ, Cohen SR, Guillon Hypoxic effects on corneal morphology and function. Invest Ophthalmol Vis Sci. 1990 Aug;31(8):1542–54.
  • Pricopie S, Istrate S, Voinea L, Leasu C, Paun V, Radu Pseudophakic bullous keratopathy. Rom J Ophthalmol. 2017 Apr-Jun;61(2):90-4. DOI: https://doi.org/10.22336/rjo.2017.17
  • Rodriguez A-M, Elabd C, Amri E-Z, Ailhaud G, Dani The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005 Jan;87(1):125–8. DOI: https://doi.org/10.1016/j.biochi.2004.11.007
  • Schwartzkopff J, Bredow L, Mahlenbrey S, Boehringer D, Reinhard Regeneration of corneal endothelium following complete endothelial cell loss in rat keratoplasty. Mol Vis. 2010 Nov 11;16:2368–75.
  • Sha X, Liu Z, Song L, Wang Z, Liang Human amniotic epithelial cell niche enhances the functional properties of human corneal endothelial cells via inhibiting P53-survivin-mitochondria axis. Exp Eye Res. 2013 Nov;116:36– 46. DOI: https://doi.org/10.1016/j.exer.2013.08.008
  • Shao C, Chen J, Chen P, Zhu M, Yao Q, Gu P, et Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2015 Mar 15;24(6):756–67. DOI: https://doi.org/10.1089/scd.2014.0255
  • Shao C, Fu Y, Lu W, Fan Bone marrow-derived endothelial progenitor cells: a promising therapeutic al- ternative for corneal endothelial dysfunction. Cells Tissues Organs. 2011 Mar;193(4):253–63. DOI: https://doi.org/10.1159/000319797
  • Soh YQ, Peh GSL, Mehta Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med. 2017 Sep;11(9):2425–42. DOI: https://doi.org/10.1002/term.2131
  • Tourtas T, Laaser K, Bachmann BO, Cursiefen C, Kruse Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty. Am J Ophthalmol. 2012 Jun;153(6):1082-90.e2. DOI: https://doi.org/10.1016/j.ajo.2011.12.012
  • Van den Bogerd B, Zakaria N, Matthyssen S, Koppen C, Ní Dhubhghaill Exploring the Mesenchymal Stem Cell Secretome for Corneal Endothelial Proliferation. Stem Cells Int. 2020 Feb 5;2020:5891393. DOI: https://doi.org/10.1155/2020/5891393
  • Vianna LMM, Kallay L, Toyono T, Belfort R, Holiman JD, Jun Use of human serum for human corneal endothelial cell culture. Br J Ophthalmol. 2015 Feb;99(2):267–71. DOI: https://doi.org/10.1136/bjoph- thalmol-2014-306034
  • Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, Guo Y-J, et Mesenchymal Stem Cells in the Wharton’s Jelly of the Human Umbilical Cord. Stem Cells. 2004 Dec;22(7):1330–7. DOI: https://doi.org/10.1634/stem-cells.2004-0013
  • Wang T-J, Wang I-J, Lu J-N, Young T-H. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol Vis. 2012 Jan;18:255–64.
  • Wörner CH, Olguín A, Ruíz-García JL, Garzón-Jiménez Cell pattern in adult human corneal en- dothelium. PLoS One. 2011 May;6(5):e19483. DOI:https://doi.org/10.1371/journal.pone.0019483
  • Yamashita K, Inagaki E, Hatou S, Higa K, Ogawa A, Miyashita H, et Corneal Endothelial Regeneration Using Mesenchymal Stem Cells Derived from Human Umbilical Cord. Stem Cells Dev. 2018 Aug;27(16):1097–108. DOI: https://doi.org/10.1089/scd.2017.0297
  • Zafirakis P, Kymionis GD, Grentzelos MA, Livir-Rallatos Corneal Graft Detachment Without Corneal Edema After Descemet Stripping Automated Endothelial Keratoplasty. 2010 Apr;29(4):456–8. DOI: https://doi.org/10.1097/ico.0b013e3181b46bc2
  • Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia Corneal endothelium: developmental strategies for regeneration. Eye (Lond). 2013 May;27(5):579–88. DOI: https://doi.org/10.1038/eye.2013.15
  • Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol. 2015 Dec 17;15 Suppl 1:155. DOI: https://doi.org/10.1186/s12886-015-0138-4