Feature selection for multimodalacoustic Event detection

  1. Butko, Taras
Supervised by:
  1. Climent Nadeu Camprubí Director

Defence university: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 08 July 2011

Committee:
  1. María Asunción Moreno Bilbao Chair
  2. Francisco Javier Hernando Pericas Secretary
  3. Alfonso Ortega Giménez Committee member
  4. Joern Anemueller Committee member
  5. Ramón López-Cózar Delgado Committee member

Type: Thesis

Teseo: 113029 DIALNET lock_openTDX editor

Abstract

The detection of the Acoustic Events (AEs) naturally produced in a meeting room may help to describe the human and social activity. The automatic description of interactions between humans and environment can be useful for providing: implicit assistance to the people inside the room, context-aware and content-aware information requiring a minimum of human attention or interruptions, support for high-level analysis of the underlying acoustic scene, etc. On the other hand, the recent fast growth of available audio or audiovisual content strongly demands tools for analyzing, indexing, searching and retrieving the available documents. Given an audio document, the first processing step usually is audio segmentation (AS), i.e. the partitioning of the input audio stream into acoustically homogeneous regions which are labelled according to a predefined broad set of classes like speech, music, noise, etc. Acoustic event detection (AED) is the objective of this thesis work. A variety of features coming not only from audio but also from the video modality is proposed to deal with that detection problem in meeting-room and broadcast news domains. Two basic detection approaches are investigated in this work: a joint segmentation and classification using Hidden Markov Models (HMMs) with Gaussian Mixture Densities (GMMs), and a detection-by-classification approach using discriminative Support Vector Machines (SVMs). For the first case, a fast one-pass-training feature selection algorithm is developed in this thesis to select, for each AE class, the subset of multimodal features that shows the best detection rate. AED in meeting-room environments aims at processing the signals collected by distant microphones and video cameras in order to obtain the temporal sequence of (possibly overlapped) AEs that have been produced in the room. When applied to interactive seminars with a certain degree of spontaneity, the detection of acoustic events from only the audio modality alone shows a large amount of errors, which is mostly due to the temporal overlaps of sounds. This thesis includes several novelties regarding the task of multimodal AED. Firstly, the use of video features. Since in the video modality the acoustic sources do not overlap (except for occlusions), the proposed features improve AED in such rather spontaneous scenario recordings. Secondly, the inclusion of acoustic localization features, which, in combination with the usual spectro-temporal audio features, yield a further improvement in recognition rate. Thirdly, the comparison of feature-level and decision-level fusion strategies for the combination of audio and video modalities. In the later case, the system output scores are combined using two statistical approaches: weighted arithmetical mean and fuzzy integral. On the other hand, due to the scarcity of annotated multimodal data, and, in particular, of data with temporal sound overlaps, a new multimodal database with a rich variety of meeting-room AEs has been recorded and manually annotated, and it has been made publicly available for research purposes.