Visualizing Chlorophyll a Fluorescence: A Practical Demonstration

  1. Ali Ahmad 1
  2. Santiago Atero Calvo 1
  3. Begoña Blasco León 1
  4. Safa Selmi 2
  5. Alessandro Candiani 3
  6. Vanessa Martos Núñez 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 University of Gabès
    info

    University of Gabès

    Gabes, Túnez

    ROR https://ror.org/022efad20

  3. 3 DNAPhone SRL
Revista:
ReiDoCrea: Revista electrónica de investigación y docencia creativa

ISSN: 2254-5883

Año de publicación: 2022

Volumen: 11

Páginas: 713-718

Tipo: Artículo

DOI: 10.30827/DIGIBUG.78021 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: ReiDoCrea: Revista electrónica de investigación y docencia creativa

Resumen

Las clorofilas son los principales componentes de las plantas para recolectar la luz. Utilizan la energía procedente de la radiación solar para llevar a cabo el proceso de fotosíntesis y producir moléculas orgánicas reducidas como los hidratos de carbono. Sin embargo, el total de la utilización de la luz incidente no toda es aprovechada en el proceso de fotosíntesis, ya que esta se enfrenta a otros dos destinos. Una parte se disipa como calor, mientras que la otra se emite como fluorescencia. Estos procesos ocurren de forma simultánea y que se de uno u otro proceso en mayor o menor medida, va a depender tanto del estatus fisiológico de la planta como de las condiciones ambientales a las que se enfrente. La fluorescencia de la clorofila (Chl) es inversamente proporcional al rendimiento o la tasa de la fotosíntesis y, por lo tanto, tiene una importancia fundamental en los estudios de fisiología vegetal. Asimismo, hay muchos estudios en los que la fluorescencia de Chl a se ha utilizado como sonda para estimar el rendimiento fotosintético, la sequía, la salinidad, el vigor y los efectos ambientales en la producción y el rendimiento de los cultivos. Por lo tanto, este estudio se realizó para demostrar la visualización de la luz emitida por la Chl, comúnmente conocida como fluorescencia de Chl a. Las hojas de las plantas fueron adoptadas en la oscuridad durante 20 minutos antes de su exposición a la luz ultravioleta (UV). Se utilizaron gafas rojas para visualizar la luz roja emitida (fluorescencia) de las hojas. Este estudio puede infundir más interés en los estudiantes de fisiología vegetal para que profundicen y amplíen su aprendizaje realizando demostraciones sencillas como esta.

Referencias bibliográficas

  • Ahmad, A, Blasco, B, & Martos, V (2022). Combating Salinity Through Natural Plant Extracts Based Biostimulants: A Review. Frontiers in Plant Science, 1665.
  • Ahmad, A, del Moral Garrido, MBG, & Martos, V (2022). Learning about chlorophyll and anthocyanins as potential indicators of plant physiological state. ReiDoCrea: Revista electrónica de investigación y docencia creativa (11), 171-176.
  • Ahmad, A, Navarro-León, E, Izquierdo-Ramos, MJ, Rios, JJ, Blasco, B, Navarro-Morillo, I, & Ruiz, JM (2022). Analysis of RAZORMIN® as a Biostimulant and Its Effect on the Phytotoxicity Mitigation Caused by Fungicide Azoxystrobin in Pepper. Agronomy, 12(6), 1418.
  • Banks, JM (2018). Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environmental and Experimental Botany, 155, 118-127.
  • Barber, J, Malkin, S, & Telfer, A (1989). The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem II reaction centre. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 323(1216), 227-239.
  • Brestic, M, Zivcak, M, Kalaji, HM, Carpentier, R, & Allakhverdiev, SI (2012). Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiology and Biochemistry, 57, 93-105.
  • Brody, SS, & Rabinowitch, E (1957). Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science, 125(3247), 555-555.
  • Bukhov, N, Egorova, E, Krendeleva, T, Rubin, A, Wiese, C, & Heber, U (2001). Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted barley leaves as influenced by the redox states of electron carriers. Photosynthesis Research, 70(2), 155-166.
  • Bukhov, NG, Boucher, N, & Carpentier, R (1997). The correlation between the induction kinetics of the photoacoustic signal and chlorophyll fluorescence in barley leaves is governed by changes in the redox state of the photosystem II acceptor side. A study under atmospheric and high CO2 concentrations. Canadian journal of botany, 75(9), 1399-1406.
  • Buschmann, C, & Kocsányi, L (1989). Light-induced heat production correlated with fluorescence and its quenching mechanisms. Photosynthesis Research, 21(2), 129-136.
  • Bussotti, F, Desotgiu, R, Cascio, C, Pollastrini, M, Gravano, E, Gerosa, G, Marzuoli, R, Nali, C, Lorenzini, G, & Salvatori, E (2011). Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environmental and Experimental Botany, 73, 19-30.
  • Cosgrove, J, & Borowitzka, MA (2010). Chlorophyll fluorescence terminology: an introduction. In Chlorophyll a fluorescence in aquatic sciences: methods and applications (pp. 1-17). Springer.
  • De Wijn, R, & Van Gorkom, HJ (2001). Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry, 40(39), 11912- 11922.
  • Duan, J, Fu, B, Kang, H, Song, Z, Jia, M, Cao, D, & Wei, A (2019). Response of gas-exchange characteristics and chlorophyll fluorescence to acute sulfur dioxide exposure in landscape plants. Ecotoxicology and Environmental Safety, 171, 122-129.
  • Duysens, L (1963). Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. Studies on microalgae and photosynthetic bacteria, 353-372.
  • Goltsev, V, Zaharieva, I, Chernev, P, Kouzmanova, M, Kalaji, HM, Yordanov, I, Krasteva, V, Alexandrov, V, Stefanov, D, & Allakhverdiev, SI (2012). Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(8), 1490- 1498.
  • Gorbe, E, & Calatayud, A (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae, 138, 24-35.
  • Guidi, L, Degl’Innocenti, E, Remorini, D, Biricolti, S, Fini, A, Ferrini, F, Nicese, FP, & Tattini, M (2011). The impact of UV-radiation on the physiology and biochemistry of Ligustrum vulgare exposed to different visible-light irradiance. Environmental and Experimental Botany, 70(2-3), 88-95.
  • Hideg, E, & Schreiber, U (2007). Parallel assessment of ROS formation and photosynthesis in leaves by fluorescence imaging. Photosynthesis Research, 92(1), 103-108.
  • Horton, P, & Hague, A (1988). Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of nonphotochemical quenching. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 932, 107-115.
  • Ioannidis, N, Schansker, G, Barynin, VV, & Petrouleas, V (2000). Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: a comparative study. Journal of Biological Inorganic Chemistry, 5(3), 354-363.
  • Kalaji, HM, Carpentier, R, Allakhverdiev, SI, & Bosa, K (2012). Fluorescence parameters as early indicators of light stress in barley. Journal of Photochemistry and Photobiology B: Biology, 112, 1-6.
  • Kalaji, HM, Schansker, G, Brestic, M, Bussotti, F, Calatayud, A, Ferroni, L, Goltsev, V, Guidi, L, Jajoo, A, & Li, P (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132(1), 13-66.
  • Kautsky, H, Appel, W, & Amann, H (1960). Chlorophyll-fluorescenz und Kohlensaureassimilation. XIII. Mitteilung. Die Fluorescenzkurve und die Photochemie der Pflanze. Biochem. Z., 332, 277-292.
  • Klughammer, C, & Schreiber, U (1994). An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta, 192(2), 261-268.
  • Krall, J, & Edwards, GE (1990). Quantum yields of photosystem II electron transport and carbon dioxide fixation in C4 plants. Functional Plant Biology, 17(5), 579-588.
  • Krause, GH, & Weis, E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual review of plant biology, 42(1), 313-349.
  • Latimer, P, Bannister, T, & Rabinowitch, E (1956). Quantum yields of fluorescence of plant pigments. Science, 124(3222), 585-586.
  • Lichtenthaler, HK, Ač, A, Marek, MV, Kalina, J, & Urban, O (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45(8), 577-588.
  • Matsubara, S, Chen, Y, Caliandro, R, & Clegg, RM (2011). Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching. Journal of Photochemistry and Photobiology B: Biology, 104(1-2), 271-284.
  • Maxwell, K, & Johnson, GN (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668.
  • Nedbal, L, & Whitmarsh, J (2004). Chlorophyll fluorescence imaging of leaves and fruits. In Chlorophyll a Fluorescence (pp. 389-407). Springer.
  • Oláh, V, Hepp, A, Irfan, M, & Mészáros, I (2021). Chlorophyll fluorescence imaging-based duckweed phenotyping to assess acute phytotoxic effects. Plants, 10(12), 2763.
  • Porcar-Castell, A, Tyystjärvi, E, Atherton, J, Van der Tol, C, Flexas, J, Pfündel, EE, Moreno, J, Frankenberg, C, & Berry, JA (2014). Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of experimental botany, 65(15), 4065-4095.
  • Ralph, PJ, & Gademann, R (2005). Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic botany, 82(3), 222- 237.
  • Sang, H, Guo, W, Gao, Y, Jiao, X, & Pan, X (2020). Effects of Alternating Fresh and Saline Water Irrigation on Soil Salinity and Chlorophyll Fluorescence of Summer Maize. Water, 12(11), 3054.
  • Schansker, G, Srivastava, A, & Strasser, RJ (2003). Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30(7), 785-796.
  • Schansker, G, Tóth, SZ, & Strasser, RJ (2005). Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706(3), 250-261.
  • Schreiber, U, Klughammer, C, & Kolbowski, J (2012). Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynthesis Research, 113(1), 127-144.
  • Schreiber, U, Schliwa, U, & Bilger, W (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10(1), 51-62.
  • Snel, JF, Kooijman, M, & Vredenberg, WJ (1990). Correlation between chlorophyll fluorescence and photoacoustic signal transients in spinach leaves. Photosynthesis Research, 25(3), 259- 268.
  • Strasser, RJ, Tsimilli-Michael, M, & Srivastava, A (2004). Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a fluorescence (321-362). Springer.
  • Swoczyna, T, Kalaji, HM, Pietkiewicz, S, Borowski, J, & ZaraśJanuszkiewicz, E (2010). Monitoring young urban trees tolerance to roadside conditions by application of chlorophyll fluorescence. Zesz. Probl. Postepow Nauk Roln, 545, 303-309.