Nuevo tratamiento de oxidación en aleaciones de NiTi para aplicaciones biomédicas. Caracterización superficial y respuesta biológica in vitro

  1. Michiardi, Alexandra
Supervised by:
  1. Francesc Xavier Gil Director
  2. Conrado José Aparicio Bádenas Director

Defence university: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 17 September 2007

Committee:
  1. Josep Antoni Planell Estany Chair
  2. Elisabet Engel López Secretary
  3. Miguel Ángel Cabrerizo Vílchez Committee member
  4. Francisco Javier Fernández Gonzalez Committee member

Type: Thesis

Teseo: 111521 DIALNET lock_openTDX editor

Abstract

Since their discovery, at the beginning of the 1960s, the interest for NiTi Shape Memory Alloys has constantly increased. Nowadays, these materials are extensively used in the biomedical field. However, special care must be taken because of the problems of allergy and toxicity that can be associated with the release of Ni ions contained in these materials. A great variety of surface treatments was developed to decrease Ni surface concentration, and consequently, minimize its release to the exterior medium. However, there is no satisfactory standard surface treatment that improves corrosion resistance and reduces cytotoxicity and/or thrombogenicity of NiTi material. The aim of this PhD thesis is to obtain and to characterise a new oxidation treatment of NiTi alloys for biomedical applications. Correlations between physicochemical and topographical properties of NiTi surfaces and, protein and in vitro cell response have also been studied. A new oxidation treatment (OT) has been optimized to form a titanium oxide (TiO2), almost Nifree, on NiTi alloys surfaces. This treatment does not significantly alter the shape memory properties of these materials. The OT treatment increases the roughness of NiTi surfaces and homogenizes the topographical differences that were present on the untreated surfaces studied. Moreover, the surfaces treated with OT have surface energy and electrostatic characteristics more similar to pure Ti than untreated surfaces. Additionally, the oxide formed by OT allows to(i) significantly decrease Ni ions release to the exterior medium, (ii) decrease Ni ions incorporation into osteoblastic cells cultured on NiTi surfaces, and (iii) improve the corrosion resistance of NiTi. Austenitic alloys treated with OT are not sensitive, regarding to corrosion resistance, to scratches produced on their surface oxide. In the case of martensitic alloys, corrosion resistance decreases when their oxide are scratched. Regarding protein adsorption, the OT treatment also increases albumin adsorption, as well as fibronectin one, compared to untreated surfaces. While albumin adsorption is proportional to the polar component of surface energy of NiTi, fibronectin adsorption is governed by other additional surface properties. Finally, the in vitro cell culture results show that NiTi alloys, untreated and treated with OT, are not cytotoxic. Moreover, the osteoblasts cultured on OT surfaces show a better differentiation, in the study conditions, than untreated surfaces. As a conclusion, the new oxidation treatment obtained is proposed as a good candidate to guaranty an adequate behaviour of NiTi materials for biomedical applications. The oxide layer formed minimizes the risks of allergy and toxicity caused by Ni ions. Moreover, because of their similar surface physicochemical properties to pure Ti, the surfaces treated with this new oxidation treatment can improve the long-term biological response of NiTi alloys.