Los dispositivos tecnológicos cotidianos en libros de textoPresencia y análisis de las exposiciones

  1. Fernández González, Manuel
  2. Torres Gil, Antonio Jesús
Revista:
Revista Eureka sobre enseñanza y divulgación de las ciencias

ISSN: 1697-011X

Año de publicación: 2014

Volumen: 11

Número: 3

Páginas: 290-302

Tipo: Artículo

DOI: 10.25267/REV_EUREKA_ENSEN_DIVULG_CIENC.2014.V11.I3.02 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista Eureka sobre enseñanza y divulgación de las ciencias

Objetivos de desarrollo sostenible

Resumen

This article studies the everyday technological devices described in tenth-grade secondary school textbooks. The first step was to determine which devices were included in these books and how frequently they appeared. It was found that there is a more or less fixed nucleus of devices along with other more modern devices, which can vary. The frequency with which a device appears in the textbook depends on the closeness of its connection to a principle or law. It also depends on the wideness of its use, which is reinforced by its innovative nature. The comparison of these textbooks with those used in the 1970s showed an increase in the number of references. However, the methodology, which remained the same as in the past, resulted in explanations that were traditional, deductive, and subordinated to theory. Finally, the textual descriptions of the devices were analyzed. In the majority of cases, these descriptions had the same schema, which was composed of three elements: (i) presentation and purpose; (ii) foundation; (iii) operation. The absence of one of these elements impoverished the quality of the explanation. Conceptual maps were used as an instrument in this analysis to clearly mark the text blocks corresponding to these elements

Referencias bibliográficas

  • AAAS (American Association for the Advancement of Science) (1993). Benchmarks for Science Literacy . New York: Oxford University Press.
  • ARAGÓN MÉNDEZ, M.M. (2004). La ciencia de lo cotidiano. Revista Eureka sobre Enseñanza y Divulgación de la Ciencia, 1(2), 109-121.
  • BENNETT, J., LUBBEN, F. y HOGARTH, S. (2007). Bringing Science to Life: A Synthesis of the Research Evidence on the Effects of Context-Based and STS Approaches to Science Teaching. Science Education, 91(3), 347-370.
  • CAJAS, F. (1999). Public understanding of science: using technology to enhance school science in everyday life. International Journal of Science Education, 21(7), 765-773.
  • CAMPBELL, B., LAZONBY, J., MILLAR, R., NICOLSON, P., RAMSDEN, J. y WADDINGTON, D. (1994). Science: The Salters' approach. A case study of the process of large scale curriculum development. Science Education, 78(5), 415-447.
  • COSTA, V. (1995). When science is "another world": Relationships between worlds of family, friends, school, and science. Science Education, 79(3), 347-372.
  • DE JONG, O. (2006). Making chemistry meaningful: Conditions for sucessful context-based teaching. Educación Química, 17(2), 215-221.
  • FERNÁNDEZ-GONZÁLEZ, M. (2008). Ciencias para el mundo contemporáneo. Algunas reflexiones didácticas. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 5(2), 185-199.
  • JENKINS, E. (2010). How might research inform scientific literacy in schools? Education in Science, 239, 26-27.
  • JIMÉNEZ-LISO, M.R. y DE MANUEL, E. (2009). El regreso de la química cotidiana: ¿Regresión o innovación? Enseñanza de las Ciencias, 27(2), 257-272.
  • MARCO-STIEFEL, B. (2000). La alfabetización científica. En Perales y Cañal (Dirs.) Didáctica de las Ciencias Experimentales, pp. 141-164. Alcoy: Marfil.
  • MILLAR, R. y HUNT, A. (2002). Science for public understanding: a different way to teach and learn science. School Science Review, 83(304), 35-42.
  • MINISTERIO DE EDUCACIÓN Y CIENCIA (2007). Real Decreto 1631/2006 por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria. B.O.E., 5, 05-01-2007. Madrid: M.E.C.
  • MORALES PÉREZ, R.W. y MANRIQUE RODRIGUEZ, F.A. (2012). Formación de profesores de química a partir de la explicación de fenómenos cotidianos: una propuesta con resultados. Revista Eureka sobre Enseñanza y Divulgación de la Ciencia, 9(1), 124-142.
  • OLARTECOECHEA, C. (2003). Tecnología y Ciencia: Interdisciplinariedad y vinculación con el mundo de las ocupaciones. Alambique 38, pp. 42-48.
  • PILOT, A. y BULTE, A.M.W. (2006). Why Do You "Need to Know"? Context-based education. International Journal of Science Education, 28(9), 953-956.
  • PONTES PEDRAJAS, A. (2012). Representación y comunicación del conocimiento con mapas conceptuales en la formación del profesorado de ciencia y tecnología. Revista Eureka sobre Enseñanza y Divulgación de la Ciencia, 9(1), 106-123.
  • PLANA, O., CAAMAÑO, A., ENRECH, M., PONT, J. y PUEYO, L. (2005). La Física Salters: un proyecto para la enseñanza contextualizada de la física en el bachillerato. Alambique, 46, 93-102.
  • ROCARD, M., CSERMELY, P., JORDE, D., LENZEN, D., WALWERG-HENRIKSSON, H. y HEMMO, V. (2008). Enseñanza de las ciencias ahora: Una nueva pedagogía para el futuro de Europa. Alambique, 55, 104-117.
  • SOLBES, J. y VILCHES, A. (1997). STS Interaction and the Teaching of Physics and Chemistry. Science Education, 81, 377-386.
  • STARR, M.L. y KRAJCIK, J.S. (1990). Concept maps as a heuristic for science curriculum development: Toward improvement in process and product. Journal of Research in Science Teaching, 27(10), 987-1000.