Variabilidad de la frecuencia cardiaca y ejercicio.¿Fundamentación fisiológica?

  1. F.J. Calderón 1
  2. Rocío Cupeiro Coto 1
  3. Ana Belén Peinado Lozano 1
  4. Irma Lorenzo Capellá 2
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  2. 2 Universidad Camilo José Cela
    info

    Universidad Camilo José Cela

    Villanueva de la Cañada, España

    ROR https://ror.org/03f6h9044

Revista:
Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

ISSN: 1577-0354

Año de publicación: 2020

Volumen: 20

Número: 78

Páginas: 299-320

Tipo: Artículo

DOI: 10.15366/RIMCAFD2020.78.008 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

Resumen

Este trabajo pretende dos objetivos: 1º) dar una visión pedagógica de la complejidad relativa al tratamiento matemático de la variabilidad de la frecuencia cardiaca y 2º) analizar si el tratamiento matemático de la señal RR (distancia entre dos ondas R del electrocardiograma) tiene una base fisiológica. Se revisan los mecanismos fisiológicos que explican uno de los fenómenos de base para el análisis de la variabilidad: la arritmia sinusal respiratoria. Se analizan las bases matemáticas, así como los métodos matemáticos de valoración, de la variabilidad. Finalmente, se realiza una revisión del significado fisiológico de las bandas de frecuencia obtenidas mediante las diversas metodologías del tratamiento de la señal RR. No está claro si los métodos matemáticos de tratamiento de la señal RR pueden ser una herramienta de valoración de la función vegetativa. Por ello, debemos tener precaución al interpretar esta variable, sobre todo en el contexto del ejercicio físico y entrenamiento.

Referencias bibliográficas

  • Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring. Sports Medicine, 33(7), 517-538. https://doi.org/10.2165/00007256-200333070-00004
  • Billman, G. E. (2015). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Heart Rate Variability: Clinical Applications and Interaction between HRV and Heart Rate, 54.
  • Boron, W. F., & Boulpaep, E. L. (2012). Medical Physiology, 2e Updated Edition: with STUDENT CONSULT Online Access: Elsevier Health Sciences.
  • Borresen, J., & Lambert, M. I. (2008). Autonomic control of heart rate during and after exercise. Sports Medicine, 38(8), 633-646. https://doi.org/10.2165/00007256-200838080-00002
  • Cardiology, T. F. o. t. E. S. o. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J, 17, 354-381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
  • Casadei, B., Cochrane, S., JOHNSOTON, J., Conway, J., & Sleight, P. (1995). Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiologica Scandinavica, 153(2), 125-131. https://doi.org/10.1111/j.1748-1716.1995.tb09843.x
  • Cherniack, N., Adams, E., Prabhakar, N., Haxhiu, M., & Mitra, J. (1989). Integration of cardiorespiratory responses in the ventrolateral medulla. Progress in brain research, 81, 215-220. https://doi.org/10.1016/S0079-6123(08)62011-7
  • Coleridge, H. M., & Coleridge, J. C. G. (1986). Reflexes evoked from tracheobronchial tree and lungs. In A. P. Fishman (Ed.), Handbook of physiology. Section 3: The Respiratory System (Vol. II: Control of breathing, part I, pp. 407-413). Bethesda, Maryland: American Physiological Society.
  • Cottin, F., Durbin, F., & Papelier, Y. (2004). Heart rate variability during cycloergometric exercise or judo wrestling eliciting the same heart rate level. European journal of applied physiology, 91(2-3), 177-184. https://doi.org/10.1007/s00421-003-0969-1
  • Cottin, F., Papelier, Y., & Escourrou, P. (1999). Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise. International journal of sports medicine, 20(4), 232-238. https://doi.org/10.1055/s-2007-971123
  • Das, G. (1989). Therapeutic review. Cardiac effects of atropine in man: an update. International journal of clinical pharmacology, therapy, and toxicology, 27(10), 473-477.
  • Evans, J. M., Ziegler, M. G., Patwardhan, A. R., Ott, J. B., Kim, C. S., Leonelli, F. M., ∓ Knapp, C. F. (2001). Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes. Journal of Applied Physiology, 91(6), 2611-2618. https://doi.org/10.1152/jappl.2001.91.6.2611
  • Goldberger, J. J., Challapalli, S., Tung, R., Parker, M. A., & Kadish, A. H. (2001). Relationship of heart rate variability to parasympathetic effect. Circulation, 103(15), 1977-1983. https://doi.org/10.1161/01.CIR.103.15.1977
  • Hagerman, I., Berglund, M., Lorin, M., Nowak, J., & Sylvén, C. (1996). Chaos-related deterministic regulation of heart rate variability in time-and frequency domains: effects of autonomic blockade and exercise. Cardiovascular research, 31(3), 410-418. https://doi.org/10.1016/S0008-6363(95)00084-4
  • Hughson, R. L., Sutton, J. R., Fitzgerald, J. D., & Jones, N. L. (1977). Reduction of intrinsic sinoatrial frequency and norepinephrine response of the exercised rat. Canadian journal of physiology and pharmacology, 55(4), 813-820. https://doi.org/10.1139/y77-109
  • Jewett, D. (1964). Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio-inhibitory fibres. The Journal of Physiology, 175(3), 321. https://doi.org/10.1113/jphysiol.1964.sp007520
  • Jindal, V., Gupta, S., & Das, R. (2013). Molecular mechanisms of meditation. Molecular neurobiology, 48(3), 808-811. https://doi.org/10.1007/s12035-013-8468-9
  • Katona, P. G., & Jih, F. (1975). Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol, 39(5), 801-805. https://doi.org/10.1152/jappl.1975.39.5.801
  • Korner, P. (1971). The central nervous system and physiological mechanisms of “Optimal” cardiovascular control. Amer. J. exp. Biol. Med. Sci, 49, 319-343. https://doi.org/10.1038/icb.1971.35
  • Korner, P. I. (1971). Integrative neural cardiovascular control. Physiological Reviews, 51(2), 312-367. https://doi.org/10.1152/physrev.1971.51.2.312
  • Kunze, D. L. (1972). Reflex discharge patterns of cardiac vagal efferent fibres. The Journal of Physiology, 222(1), 1. https://doi.org/10.1113/jphysiol.1972.sp009784
  • Kuo, C.-D., Chen, G.-Y., Lai, S.-T., Wang, Y.-Y., Shih, C.-C., & Wang, J.-H. (1999). Sequential changes in heart rate variability after coronary artery bypass grafting. The American journal of cardiology, 83(5), 776-779. https://doi.org/10.1016/S0002-9149(98)00989-8
  • Kuo, T. B., Lin, T., Yang, C. C., Li, C.-L., Chen, C.-F., & Chou, P. (1999). Effect of aging on gender differences in neural control of heart rate. American Journal of Physiology-Heart and Circulatory Physiology, 277(6), H2233-H2239. https://doi.org/10.1152/ajpheart.1999.277.6.H2233
  • Lombardi, F. (2000). Chaos theory, heart rate variability, and arrhythmic mortality. Circulation, 101(1), 8-10. https://doi.org/10.1161/01.CIR.101.1.8
  • Ludwig, C. (1847). Beitrage zur Kenntniss des Einflusses der Respirationsbewegungen auf den Blutlauf im Aortensysteme. Arch. Anat. Physiol, 13, 242-302.
  • Malmo, R. B., Shagass, C., Davis, J., Cleghorn, R., Graham, B., & Goodman, A. J. (1948). Standardized pain stimulation as controlled stress in physiological studies of psychoneurosis. Science, 108(2810), 509-511. https://doi.org/10.1126/science.108.2810.509
  • Mourot, L., Bouhaddi, M., Perrey, S., Cappelle, S., Henriet, M. T., Wolf, J. P., . . . Regnard, J. (2004). Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clinical physiology and functional imaging, 24(1), 10-18. https://doi.org/10.1046/j.1475-0961.2003.00523.x
  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., . . . Piccaluga, E. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation research, 59(2), 178-193. https://doi.org/10.1161/01.RES.59.2.178
  • Piccirillo, G., Ogawa, M., Song, J., Chong, V. J., Joung, B., Han, S., . . . Chen, P.-S. (2009). Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm, 6(4), 546-552. https://doi.org/10.1016/j.hrthm.2009.01.006
  • Rosenblueth, A., & Simeone, F. (1934). The interrelations of vagal and accelerator effects on the cardiac rate. American Journal of Physiology--Legacy Content, 110(1), 42-55. https://doi.org/10.1152/ajplegacy.1934.110.1.42
  • Sandercock, G., & Brodie, D. (2006). The use of heart rate variability measures to assess autonomic control during exercise. Scandinavian journal of medicine & science in sports, 16(5), 302-313. https://doi.org/10.1111/j.1600-0838.2006.00556.x
  • Sandercock, G., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc, 37(3), 433-439. https://doi.org/10.1249/01.MSS.0000155388.39002.9D
  • Sarmiento Montesdeoca, S., García-Manso, J. M., Martín-González, J., Medina, G., Calderón, F., & Rodríguez Ruíz, D. (2009). Análisis tiempo-frecuencia de la variabilidad de la frecuencia cardiaca (VFC) durante la aplicación de un esfuerzo incremental en ciclistas. dEsdE la ExpEriEncia, 71.
  • Schramm, L. P. (2006). Spinal sympathetic interneurons: their identification and roles after spinal cord injury. Progress in brain research, 152, 27-37. https://doi.org/10.1016/S0079-6123(05)52002-8
  • Silva, C., Pereira, L. M., Cardoso, J. R., Moore, J. P., & Nakamura, F. Y. (2014). The Effect of physical training on heart rate variability in healthy children: A systematic review with meta-analysis. Pediatr Exerc Sci, 26(2), 147-158. https://doi.org/10.1123/pes.2013-0063
  • Silva, V. P., Oliveira, N. A., Silveira, H., Mello, R. G. T., & Deslandes, A. C. (2015). Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Annals of Noninvasive Electrocardiology, 20(2), 108-118. https://doi.org/10.1111/anec.12237
  • Singh, J. P., Larson, M. G., O'Donnell, C. J., & Levy, D. (2001). Genetic factors contribute to the variance in frequency domain measures of heart rate variability. Autonomic Neuroscience, 90(1), 122-126. https://doi.org/10.1016/S1566-0702(01)00277-6
  • Singh, J. P., Larson, M. G., O’Donnell, C. J., Tsuji, H., Corey, D., & Levy, D. (2002). Genome scan linkage results for heart rate variability (the Framingham Heart Study). The American journal of cardiology, 90(12), 1290-1293. https://doi.org/10.1016/S0002-9149(02)02865-5
  • Singh, J. P., Larson, M. G., O’Donnell, C. J., Tsuji, H., Evans, J. C., & Levy, D. (1999). Heritability of Heart Rate Variability The Framingham Heart Study. Circulation, 99(17), 2251-2254. https://doi.org/10.1161/01.CIR.99.17.2251
  • Tanaka, H., Dinenno, F. A., Monahan, K. D., Clevenger, C. M., DeSouza, C. A., & Seals, D. R. (2000). Aging, habitual exercise, and dynamic arterial compliance. Circulation, 102(11), 1270-1275. https://doi.org/10.1161/01.CIR.102.11.1270
  • Taylor, E. W., Leite, C. A., Sartori, M. R., Wang, T., Abe, A. S., & Crossley, D. A. (2014). The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. The Journal of experimental biology, 217(5), 690-703. https://doi.org/10.1242/jeb.086199
  • Tsuji, H., Venditti, F. J., Manders, E. S., Evans, J. C., Larson, M. G., Feldman, C. L., & Levy, D. (1996). Determinants of heart rate variability. Journal of the American College of Cardiology, 28(6), 1539-1546. https://doi.org/10.1016/S0735-1097(96)00342-7
  • Turner, D. L. (1991). Cardiovascular and respiratory control mechanisms during exercise: an integrated view. J Exp Biol, 160, 309-340.
  • Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. Journal of the American College of Cardiology, 31(3), 593-601. https://doi.org/10.1016/S0735-1097(97)00554-8
  • Verberne, A. J., & Owens, N. C. (1998). Cortical Modulation of theCardiovascular System. Progress in neurobiology, 54(2), 149-168. https://doi.org/10.1016/S0301-0082(97)00056-7