Bulk and compound-specific δ13C and n-alkane indices in a palustrine intermontane record for assessing environmental changes over the past 320 kathe Padul Basin, Southwestern Mediterranean realm

  1. José E. Ortiz 1
  2. Trinidad Torres 1
  3. Antonio Delgado
  4. Maruja Valle 2
  5. Vicente Soler
  6. Rafael Araujo
  7. María R. Rivas 2
  8. Ramón Julià
  9. Yolanda Sánchez Palencia 1
  10. Rogelio Vega Panizo 1
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Volumen: 47

Número: 4

Páginas: 625-639

Tipo: Artículo

DOI: 10.1007/S41513-021-00175-Y DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

Proporcionamos información valiosa sobre la evolución paleoambiental de la región Mediterráneo suroccidental durante los últimos ca. 320 ka a través del estudio de biomarcadores del registro continental continuo Cuaternario más largo de la Península Ibérica. El contenido de n-alcanos y los valores de δ13C de estos lípidos se midieron en 300 muestras tomadas de los 55 m superiores del registro de la cuenca de Padul. La señal δ13C de los n-alcanos de cadena larga proporcionó información sobre la vegetación terrestre C4/C3 en la cuenca, ya que las macroftas emergentes contribuyen en menor grado a la señal de estos compuestos de mayor peso molecular. Por el contrario, los valores de δ13C de los alcanos C23 y C25 refejaron, principalmente, fases de aumento del nivel de agua, ya que las macroftas acuáticas contienen una gran proporción de estos compuestos. Los valores bajos de δ13C se atribuyeron a una marcada contribución de las plantas que utilizan la vía fotosintética C3. Los intervalos con los valores más bajos de δ13C se atribuyeron a un aporte importante de angiospermas, aunque también podrían explicarse por condiciones ambientales cambiantes o estrés ambiental, ya que se produjeron grandes cambios en δ13C en alcanos de cadena larga típicamente abundantes en plantas terrestres. Los cambios en δ13C de los alcanos de cadena media refejaron la disponibilidad limitada de CO2 inducida por la temperatura del agua, la salinidad, el pH, la productividad mejorada, la pCO2 atmosférica baja o las barreras estancadas, en lugar de la abundancia de macroftas acuáticas. Los resultados también sugieren un mayor fraccionamiento isotópico durante la síntesis de lípidos por parte de macroftas acuáticas en el MIS 7 y Holoceno, lo que produjo un aumento de los valores de δ13C en la materia orgánica y en los n-alcanos de cadena larga. Por lo tanto, el registro de δ13C resultó fundamental para determinar la contribución de las macroftas acuáticas a la composición lipídica e isotópica de la materia orgánica de los sedimentos y la reconstrucción paleoambiental. Estos resultados confrmaron que las plantas C4 contribuyeron de manera muy limitada al registro de la Cuenca del Padul. La comparación de estos resultados con el análisis de biomarcadores y polínico de la cuenca de Padul, así como con otros registros del suroeste del Mediterráneo reveló que δ13C de la materia orgánica y de los alcanos de cadena larga refejaron las oscilaciones climáticas globales del MIS 7, los Eventos Heinrich 3, 2, 1 y Younger Dryas.

Información de financiación

Financiadores

Referencias bibliográficas

  • Aichner, B., Herzschuh, U., & Wilkes, H. (2010). Infuence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Organic Geochemistry, 41, 706–718.
  • Alfaro, P., López-Garrido, A. C., Galindo-Zaldívar, J., Sanz de Galdeano, C., & Jabaloy, A. (2001). Evidence for the activity and paleoseismicity of the Padul fault (Betic Cordillera, southern Spain). Acta Geológica Hispánica, 36, 283–295.
  • Allen, E. D., & Spence, D. H. N. (1981). The diferential ability of aquatic plants to utilize the inorganic carbon supply in fresh water. New Phytologist, 87, 269–283.
  • Bernasconi, S. M., Barbieri, A., & Simona, M. (1997). Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnology and Oceanography, 42, 1755–1765.
  • Bi, X., Sheng, G., Liu, X., Li, C., & Fu, J. (2005). Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Organic Geochemistry, 36, 1405–1417.
  • Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457–474.
  • Blumer, M., Guillard, R. R. L., & Chase, T. (1971). Hydrocarbons of marine plankton. Marine Biology, 8, 183–189.
  • Brenner, M., Whitmore, T. J., Curtis, J. H., Hodell, D. A., & Schelske, C. L. (1999). Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology, 22, 205–221.
  • Brooks, J. R., Flanagan, L. B., Buchmann, N., & Ehleringer, J. R. (1997). Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia, 110, 301–311.
  • Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochimica Et Cosmochimica Acta, 117, 161–179.
  • Bush, R. T., & McInerney, F. A. (2015). Infuence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Organic Geochemistry, 79, 65–73.
  • Camuera, J., Jiménez-Moreno, G., Ramos-Román, M. J., GarcíaAlix, A., Toney, J. L., Anderson, R. S., et al. (2018). Orbitalscale environmental and climatic changes recorded in a new ~200,000-year-long multiproxy sedimentary record from Padul, southern Iberian Peninsula. Quaternary Science Reviews, 198, 91–114.
  • Camuera, J., Jiménez-Moreno, G., Ramos-Román, M. J., García-Alix, A., Toney, J. L., Anderson, R. S., et al. (2019). Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: a new long pollen record from Padul (southern Iberian Peninsula). Quaternary Science Reviews, 205, 86–105.
  • Cañada, P. (1984). Estudio hidrogeológico preliminar y de drenaje de las explotaciones a cielo abierto de lignito de Arenas del Rey y de turba de Padul. M. thesis, Granada University, 189 pp.
  • Castañeda, I. S., & Schouten, S. (2011). A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quaternary Science Reviews, 30, 2851–2891.
  • Castañeda, I. S., Mulitza, S., Schefuß, E., Lopes dos Santos, R. A., Sinninghe Damsté, J. S., & Schouten, S. (2009). Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proceedings of the National Academy of Sciences, 106(48), 20159–20163.
  • Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158.
  • Chikaraishi, Y., & Naraoka, H. (2003). Compound-specifc δD–δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 63, 361–371.
  • Collister, J. W., Rieley, G., Stern, B., Eglinton, J., & Fry, B. (1994). Compound-specifc δ 13C analyses of leaf lipids from plants with difering carbon dioxide metabolisms. Organic Geochemistry, 21, 619–627.
  • Conte, M. H., Weber, J. C., Carlson, P. J., & Flanagan, L. B. (2003). Molecular and carbon isotopic composition of leaf wax in vegetation and aerosols in a northern prairie ecosystem. Oecologia, 135, 67–77.
  • Cranwell, P. A. (1973). Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change. Freshwater Biology, 3, 259–265.
  • Cranwell, P. A. (1984). Lipid geochemistry of sediments from Upton Broad, a small productive lake. Organic Geochemistry, 7, 25–37.
  • Cranwell, P. A., Eglinton, G., & Robinson, N. (1987). Lipids of aquatic organisms as potential constributors to lacustrine sediments-II. Organic Geochemistry, 11, 513–527.
  • Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., & Freeman, K. H. (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences of the United States of America, 107, 5738–5743.
  • Diefendorf, A. F., Freeman, K. H., Wing, S. L., & Graham, H. V. (2011). Production of n-alkyl lipids in living plants and implications for the geologic past. Geochimica Et Cosmochimica Acta, 75, 7472–7485.
  • Diefendorf, A. F., Leslie, A. B., & Wing, S. L. (2015). Leaf wax composition and carbon isotopes vary among major conifer groups. Geochimica Et Cosmochimica Acta, 170, 145–156.
  • Dungait, J. A., Docherty, G., Straker, V., & Evershed, R. P. (2011). Variation in bulk tissue, fatty acid and monosaccharide δ13C values between autotrophic and heterotrophic plant organs. Phytochemistry, 72, 2130–2138.
  • Eglinton, G., & Calvin, M. (1967). Chemical fossils. Scientifc American, 216, 32–43.
  • Eglinton, G., & Hamilton, R. J. (1963). The distribution of n-alkanes. In T. Swain (Ed.), Chemical Plant Taxonomy (pp. 87–217). Academic Press.
  • Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes. Science, 156, 1322–1335.
  • Eley, Y., Dawson, L., & Pedentchouk, N. (2016). Investigating the carbon isotope composition and leaf wax n-alkane concentration of C3 and C4 plants in Stifkey saltmarsh, Norfolk, UK. Organic Geochemistry, 96, 28–42.
  • Espie, G. S., Miller, G. A., Kandasamy, R. A., & Cavin, D. T. (1991). Active HCO3 transport in cyanobacteria. Canadian Journal of Botany, 69, 936–944.
  • Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503–537.
  • Ficken, K. J., Street-Perrott, F. A., Perrott, R. A., Swain, D. L., Olago, D. O., & Eglinton, G. (1998). Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya East Africa. Organic Geochemistry, 29, 1701–1719.
  • Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/foating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745–749.
  • Florschütz, F., Menéndez Amor, J., & Wijmstra, T. A. (1971). Palinology of a thick Quaternary succession in southern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 10, 233–264.
  • Follieri, M., Magri, D., & Sadori, L. (1988). 250,000-year pollen record from Valle di Castiglione (Roma). Pollen Spores, 3–4, 329–356.
  • France, R. L. (1995). C-13 Enrichment in benthic compared to planktonic algae—Foodweb implications. Marine Ecology Progress Series, 124, 307–317.
  • Gelpi, E., Scheider, H., Mann, J., & Oro, J. (1970). Hydrocarbons of geochemical signifcance in microscopic algae. Phytochemistry, 9, 603–612.
  • Goericke, J. P., Montoya, J. P., & Fry, B. (1994). Physiology of isotopic fractionation in algae and cyanobacteria. In K. Lajtha & R. H. Michener (Eds.), Stable Isotopes in Ecology and Environmental Science (pp. 187–221). Blackwell.
  • Håkansson, S. (1985). A review of various factors infuencing the stable carbon isotope ratio of organic lake sediments by the change from Glacial to post-Glacial environmental conditions. Quaternary Science Reviews, 4, 135–146.
  • Hodell, D. A., & Schelske, C. L. (1998). Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography, 43, 200–214.
  • Hollander, D. J., & Mckenzie, J. A. (1991). CO2 control on carbonisotope fractionation during aqueous photosynthesis: a paleopCO2 barometer. Geology, 19, 929–932.
  • Hollander, D. J., & Smith, M. A. (2001). Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochimica Et Cosmochimica Acta, 65, 4321–4337.
  • Hollander, D. J., Mckenzie, J. A., & Lo ten Haven, H. (1992). A 200 year sedimentary record of progressive eutrophication in lake Greifen (Switzerland): implications for the origin of organiccarbon-rich sediments. Geology, 20, 825–828.
  • Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M., & Eglinton, G. (2000). Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochimica Et Cosmochimica Acta, 64, 3505–3513.
  • Huang, Y., Street-Perrott, F. A., Metcalfe, S. E., Brenner, M., Moreland, M., & Freeman, K. (2001). Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science, 293, 1647–1651.
  • Huang, Y., Shuman, B., Wang, Y., Webb, T., Grimm, E. C., & Jacobson, G. L. (2006). Climatic and environmental controls on the variation of C3 and C4 plant abundances in central Florida for the past 62,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 428–435.
  • Jones, R. I., & Grey, J. (2011). Biogenic methane in freshwater food webs. Freshwater Biology, 56, 213–229.
  • Kankaala, P., Taipale, S., Grey, J., Sonninen, E., Arvola, L., & Jones, R. I. (2006). Experimental δ13C evidence for a contribution of methane to pelagic food webs in lakes. Limnology and Oceanography, 51, 2821–2827.
  • Keeley, J. E., & Rundel, P. P. (2003). Evolution of CAM and C4 carbon-concentrating mechanism. International Journal of Plant Sciences, 164, 55–77.
  • Keely, J. E., & Sandsquist, D. R. (1992). Carbon: freshwater plants. Plant and Cell Environment, 15, 1021–1035.
  • Laws, E. A., Thompson, P. A., Popp, B. N., & Bidigare, R. R. (1998). Sources of inorganic carbon for marine microalgal photosynthesis: a reassessment of δ13C data from batch culture studies of Thalassiosira pseudonana and Emiliana huxleyi. Limnology and Oceanography, 43, 136–142.
  • Liu, W., Li, X., An, Z., Xu, L., & Zhang, Q. (2013). Total organic carbon isotopes: a novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China. Chemical Geology, 347, 153–160.
  • Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., & Leng, Q. (2015). Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: a dual indicator of paleoenvironment in the Qinghai-Tibet Plateau. Organic Geochemistry, 83–84, 190–201.
  • Lucini, M., Torres, T., Llamas, J. F., Canoira, L., Ortiz, J. E., & García de la Morena, M. A. (2000). Geoquímica orgánica de las lutitas lacustres de las cuencas cenozoicas del Duero y Ebro. Geogaceta, 28, 93–96.
  • Mckenzie, J. A. (1985). Carbon isotopes and productivity in the lacustrine and marine environments. In W. Stumm (Ed.), Chemical Processes in Lakes (pp. 99–118). Wiley.
  • Menéndez Amor, J., & Florschütz, F. (1962). Un aspect de la végétation en Espagne méridionale durant la dernière glaciation et l´Holocène. Geology in Mijnbouw, 41, 131–134.
  • Menéndez Amor, J., & Florschütz, F. (1964). Results of the preliminary palynological investigation of samples from a 50 m boring in southern Spain. Boletín de la Real Sociedad Española de Historia Natural (Geología), 62, 251–255.
  • Meyers, P. A. (1990). Impacts of regional Late quaternary climate changes on the deposition of sedimentary organic matter in Walker Lake Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 229–240.
  • Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27, 213–250.
  • Meyers, P. A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34, 261–289.
  • Meyers, P. A., & Ishiwatari, R. (1993). Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20, 867–900.
  • Meyers, P. A., & Lallier-Verges, E. (1999). Lacustrine sedimentary organic matter records of late quaternary paleoclimates. Journal of Paleolimnology, 21, 345–372.
  • Meyers, P. A., Leenheer, M. J., & Bourbonniere, R. A. (1995). Diagenesis of vascular plant organic matter components during burial in lake sediments. Aquatic Geochemistry, 1, 35–42.
  • Montagna, P., & Ruber, E. (1980). Decomposition of Spartina alternifora in diferent seasons and habitats of a northern Massachusetts salt marsh, and a comparison with other Atlantic regions. Estuaries, 56, 1859–1861.
  • Mook, W. G., Bommerson, J. C., & Staverman, W. H. (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22, 169–176.
  • Müller, A., & Mathesius, U. (1999). The palaeoenvironments of coastal lagoons in the southern Baltic Sea. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 1–16.
  • Nestares, T., & Torres, T. (1998). Un nuevo sondeo de investigación paleoambiental del Pleistoceno y Holoceno en la turbera de Padul (Granada, Andalucía). Geogaceta, 23, 99–102.
  • Nott, C. J., Xie, S., Avsejs, L. A., Maddy, D., Chambers, F. M., & Evershed, R. P. (2000). N- alkane distribution in ombrotrophic mires as indicators of vegetation change related to climatic variation. Organic Geochemistry, 31, 231–235.
  • O’Leary, M. H. (1981). Carbon isotopic fractionation in plants. Phytochemistry, 20, 553–567.
  • O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. Fractionation techniques may reveal new aspects of carbon dynamic in plants. BioScience, 38, 328–329.
  • Ogura, K., Machilara, T., & Takada, H. (1990). Diagenesis of biomarkers in Biwa lake sediments over 1 million years. Organic Geochemistry, 16, 805–813.
  • Ortiz, J. E., Torres, T., Delgado, A., Julià, R., Lucini, M., Llamas, F. J., Reyes, E., Soler, V., & Valle, M. (2004). The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic, and molecular organic geochemical proxies. Organic Geochemistry, 35, 1243–1260.
  • Ortiz, J. E., Torres, T., Delgado, A., Llamas, F. J., & Valle, M. (2010). Palaeoenvironmental changes in the Padul Basin (Granada, Spain) over the last 1 Ma B.P. based on the biomarker content. Palaeogeography, Palaeoclimatology, Palaeoecology, 298, 286–299.
  • Ortiz, J. E., Moreno, L., Torres, T., Vegas, J., Ruiz-Zapata, B., GarcíaCortés, A., Galán, L., & Pérez-González, A. (2013). 220-ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (Central Spain) using biomarker analysis. Organic Geochemistry, 55, 85–97.
  • Pancost, R. D., Baas, M., van Geel, B., & Sinninghe Damsté, J. S. (2002). Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Organic Geochemistry, 33, 675–690.
  • Pedentchouk, N., Sumner, W., Tipple, B., & Pagani, M. (2008). δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: an experimental set up in central Washington state, USA. Organic Geochemistry, 39, 1066–1071.
  • Pons, A., & Reille, M. (1988). The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeography, Palaeoclimatology, Palaeoecology, 66, 243–263.
  • Poynter, J.G. (1989). Molecular stratigraphy: the recognition of Palaeoclimatic signals in organic geochemical data (Ph.D. thesis). University of Bristol, 240 pp.
  • Prins, H. B. A., & Elzenga, J. T. M. (1989). Bicarbonate utilization: function and mechanism. Aquatic Botany, 34, 59–83.
  • Ramos-Román, M. J., Jiménez-Moreno, G., Camuera, J., García-Alix, A., Anderson, R. C., Jiménez-Espejo, F. J., & Carrión, J. S. (2018a). Holocene climate aridifcation trend and human impact interrupted by millennial- and centennial-scale climate fuctuations from a new sedimentary record from Padul (Sierra Nevada, southern Iberian Peninsula). Climate of the past, 14, 117–137.
  • Ramos-Román, M. J., Jiménez-Moreno, G., Camuera, J., García-Alix, A., Scott Anderson, R., Jiménez-Espejo, F. J., Sachse, D., Toney, J. L., Carrión, J. S., Webster, C., & Yanes, Y. (2018b). Millennial-scale cyclical environment and climate variability during the Holocene in the western Mediterranean region deduced from a new multi-proxy analysis from the Padul record (Sierra Nevada, Spain). Global and Planetary Change, 168, 35–53.
  • Rieley, G., Collier, R. J., Jones, D. M., & Eglinton, G. (1991). The biogeochemistry of Ellesmere Lake, U.K.-I: source correlation of leaf wax inputs to the sedimentary record. Organic Geochemistry, 17, 901–912.
  • Rivas-Martínez, S. (1987). Memoria del mapa de Series de Vegetación de España, 1:400.000. Ministerio de Agricultura, Pesca y Alimentación, ICONA, Madrid.
  • Rivas-Martínez, S., & Rivas-Sáenz, S. (2009). Worldwide bioclimatic classifcation system. www.globalbioclimatics.org Accessed 15 September 2018.
  • Rommerskirchen, F., Eglington, G., Dupont, L., Günter, U., Wenzel, C., & Rullkötter, J. (2003). A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specifc δ13C land plant biomarker and pollen records. Geochemistry, Geophysics, Geosystems, 4, 1101.
  • Sánchez-Castillo, P. M., & Morales-Torres, C. (1981). Algunas especies higrofíticas de la provincia de Granada. Annales Del Jardín Botánico De Madrid, 37, 677–692.
  • Sánchez-Goñi, M. F., Landais, A., Fletcher, W. J., Naughton, F., Desprat, S., & Duprat, J. (2008). Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews, 27, 1136–1151.
  • Schwark, L., Zink, K., & Lechterbeck, J. (2002). Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology, 30, 463–466.
  • Seki, O., Nakatsuka, T., Shibata, H., & Kawamura, K. (2010). A compound-specifc n-alkane δ13C and δD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan. Geochimica Et Cosmochimica Acta, 74, 599–613.
  • Sharkey, T. D., & Berry, J. A. (1985). Carbon isotope fractionation of algae as infuenced by an inducible CO2 concentrating mechanism. In W. J. Lucas & J. A. Berry (Eds.), Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms (pp. 389–401). American Society of Plant Physiology.
  • Simoneit, B. R. T. (1997). Compound-specifc carbon isotope analyses of individual long-chain alkanes and alkanoic acid in Harmattan aerosols. Atmospheric Environment, 31, 2225–2233.
  • Sinninghe Damsté, J. S., Verschuren, D., Ossebaar, J., Blokker, J., van Houten, R., van der Meer, M. T. J., Plessen, B., & Schouten, S. (2011). A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth and Planetary Science Letters, 302, 236–246.
  • Street-Perrott, F. A., Huang, Y., Perrott, R. A., Eglinton, G., Barker, P., Ben Khelifa, L., Harkness, D. D., & Olago, D. (1997). Impact of lower atmospheric CO2 on tropical mountain ecosystems: carbon-isotope evidence. Science, 278, 1422–1426.
  • Street-Perrott, F. A., Ficken, K. J., Huang, Y., & Eglinton, G. E. (2004). Late quaternary changes in carbon cycling on Mt. Kenya, East Africa: an overview of the δ13C record in lacustrine organic matter. Quaternary Science Reviews, 23, 861–879.
  • Stuiver, M., & Braziunas, T. F. (1987). Tree cellulose 13C/12C isotope ratios and climate change. Nature, 328, 58–60.
  • Sun, Q., Xie, M., Shi, L., Zhang, Z., Lin, Y., Shang, W., Wang, K., Li, W., Liu, J., & Chu, G. (2013). Alkanes, compound-specifc carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China. Journal of Paleolimnology, 50, 331–344.
  • Talbot, M. R., & Johannessen, T. (1992). A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters, 110, 23–37.
  • Teranes, J. L., & Bernasconi, S. M. (2005). Factors controlling d13C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnology and Oceanography, 50, 914–922.
  • Tieszen, L. L., Senyimba, M. M., Imbamba, S. K., & Troughton, J. H. (1979). The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia, 37, 337–350.
  • Torres, T., Valle, M., Ortiz, J. E., Soler, V., Araujo, R., Rivas, M. R., Delgado, A., Julià, R., & Sánchez-Palencia, Y. (2020). 800 ka of palaeoenvironmental changes in the Southwestern Mediterranean realm. Journal of Iberian Geology, 46, 117–144.
  • Valero-Garcés, B. L., González-Sampériz, P., Gil Romera, G., Benito, B. M., Moreno, A., Oliva-Urcia, B., Aranbarri, J., GarcíaPrieto, E., Frugone, M., Morellón, M., Arnold, L. J., Demuro, M., Hardiman, M., Blockley, S. P. E., & Lane, C. S. (2019). A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain). Quaternary Geochronology, 54, 101006.
  • Van den Berg, M., Coops, H., Simons, J., & Pilon, J. (2002). A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquatic Botany, 72, 219–233.
  • Vegas, J., Ruiz-Zapata, B., Ortiz, J. E., Galán, L., Torres, T., GarcíaCortés, A., Pérez-González, A., & Gallardo-Millán, J. L. (2008). Identifcación de las principales fases áridas del Pleistoceno superior en el registro sedimentario lacustre del maar de Fuentillejo (Campo de Calatrava). Geo-Temas, 10, 1467–1470.
  • Vegas, J., Ruiz-Zapata, B., Ortiz, J. E., Galán, L., Torres, T., GarcíaCortés, A., Gil-García, M. J., Pérez-González, A., & GallardoMillán, J. L. (2010). Identifcation of arid phases during the last 50 kyr cal BP from the Fuentillejo maar lacustrine record (Campo de Calatrava Volcanic Field, Spain). Journal of Quaternary Science, 25, 1051–1062.
  • Viso, A. C., Pesando, D., Bernard, P., & Marty, J. C. (1993). Lipids components of the Mediterranean seagrass Posidonea oceanica. Phytochemistry, 34, 381–387.
  • Vogts, A., Moossen, H., Rommerskirchen, F., & Rullkötter, J. (2009). Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Organic Geochemistry, 40, 1037–1054.
  • Williams, D. G., & Ehleringer, J. R. (1996). Carbon isotope discrimination in three semi-arid woodland species along a monsoon gradient. Oecologia, 106, 455–460.
  • Winter, K., Aranda, J., & Holtum, J. A. M. (2005). Carbon isotope composition and water-use efciency in plants with crassulacean acid metabolism. Functional Plant Biology, 32, 381–388.
  • Wolfe, B. B., Edwards, T. W. D., Beuning, K. R. M., & Elgood, R. J. (2001). Carbon and oxygen isotope analysis of lake sediment cellulose: Methods and applications. In W. M. Last & J. P. Smol (Eds.), Tracking Environmental Changes Using Lake Sediments: Physical and Chemical Techniques (pp. 373–400). Kluwer.
  • Xie, S., Guo, J., Huang, J., Chen, F., Wang, H., & Farrimond, P. (2004). Restricted utility of δ13C of bulk organic matter as a record of paleovegetation in some loess–paleosol sequences in the Chinese Loess Plateau. Quaternary Research, 62, 86–93.
  • Yamamoto, S., Kawamura, K., Seki, O., Meyers, P. A., Zheng, Y., & Zhou, W. (2010). Environmental infuences over the last 16ka on compound-specifc δ13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China. Chemical Geology, 227, 261–268.
  • Zhou, W., Xie, S., Meyers, P. A., & Zheng, Y. (2005). Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry, 36, 1272–1284.