Abnormal degree centrality and functional connectivity in Down syndromea resting-state fMRI study

  1. Cristina Cañete-Massé 1
  2. Maria Carbó-Carreté 1
  3. Maribel Peró-Cebollero 1
  4. Shi-Xian Cui 2
  5. Chao-Gan Yan 2
  6. Joan Guàrdia-Olmos 1
  1. 1 Universitat de Barcelona
    info

    Universitat de Barcelona

    Barcelona, España

    ROR https://ror.org/021018s57

  2. 2 CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
Revista:
International journal of clinical and health psychology

ISSN: 1697-2600

Año de publicación: 2023

Volumen: 23

Número: 1

Páginas: 111-120

Tipo: Artículo

DOI: 10.1016/J.IJCHP.2022.100341 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International journal of clinical and health psychology

Resumen

Background/Objective Neuroimaging studies have shown brain abnormalities in Down syndrome (DS) but have not clarified the underlying mechanisms of dysfunction. Here, we investigated the degree centrality (DC) abnormalities found in the DS group compared with the control group, and we conducted seed-based functional connectivity (FC) with the significant clusters found in DC. Moreover, we used the significant clusters of DC and the seed-based FC to elucidate differences between brain networks in DS compared with controls. Method The sample comprised 18 persons with DS (M = 28.67, SD = 4.18) and 18 controls (M = 28.56, SD = 4.26). Both samples underwent resting-state functional magnetic resonance imaging. Results DC analysis showed increased DC in the DS in temporal and right frontal lobe, as well as in the left caudate and rectus and decreased DC in the DS in regions of the left frontal lobe. Regarding seed-based FC, DS showed increased and decreased FC. Significant differences were also found between networks using Yeo parcellations, showing both hyperconnectivity and hypoconnectivity between and within networks. Conclusions DC, seed-based FC and brain networks seem altered in DS, finding hypo- and hyperconnectivity depending on the areas. Network analysis revealed between- and within-network differences, and these abnormalities shown in DS could be related to the characteristics of the population.

Información de financiación

Referencias bibliográficas

  • Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17. https://doi.org/10.1371/journal.pcbi.0030017.
  • Anderson, J. S., Nielsen, J. A., Ferguson, M. A., Burback, M. C., Cox, E. T., Dai, L., Gerig, G., Edgin, J. O., & Korenberg, J. R. (2013). Abnormal brain synchrony in Down syndrome. NeuroImage: Clinical, 2, 703–715. https://doi.org/ 10.1016/j.nicl.2013.05.006.
  • Baburamani, A. A., Patkee, P. A., Arichi, T., & Rutherford, M. A. (2019). New approaches to studying early brain development in Down syndrome. Developmental Medicine & Child Neurology, 61(8), 867–879. https://doi.org/10.1111/dmcn.14260.
  • Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011.
  • Bull, M. J. (2020). Down syndrome. New England Journal of Medicine, 382(24), 2344–2352. https://doi.org/10.1056/NEJMra1706537.
  • Chen, X., Lu, B., & Yan, C. G. (2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Human Brain Mapping, 39(1), 300–318. https://doi.org/10.1002/hbm.23843.
  • Choi, E. Y., Yeo, B. T., & Buckner, R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 108(8), 2242–2263. https://doi.org/10.1152/jn.00270.2012.
  • Csumitta, K. D., Gotts, S. J., Clasen, L. S., Martin, A., & Raitano Lee, N. (2022). Youth with Down syndrome display widespread increased functional connectivity during rest. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-13437-1.
  • DiProspero, N. D., Kim, S., & Yassa, M. A. (2022). Magnetic resonance imaging biomarkers for cognitive decline in Down syndrome. The neurobiology of aging and Alzheimer disease in down syndrome (pp. 149-172). Academic Press. https://doi.org/10.1016/B978-0-12-818845-3.00014-1.
  • Edgin, J. O., Mason, G. M., Allman, M. J., Capone, G. T., DeLeon, I., Maslen, C., Reeves, R. H., Sherman, S. L., & Nadel, L. (2010). Development and validation of the arizona cognitive test battery for down syndrome. Journal of Neurodevelopmental Disorders, 2(3), 149–164. https://doi.org/10.1007/s11689-010-9054-3.
  • Fortea, J., Vilaplana, E., Carmona-Iragui, M., Benejam, B., Videla, L., Barroeta, I., Fern�andez, S., Altuna, M., Pegueroles, J., Montal, V., Valldeneu, S., Gimenez, S., Gonzalez-Ortiz, S., Muñoz, L., Estelles, T., Illan-Gala, I., Belbin, O., Camacho, V., Wilson, L. R., & Lleo, A. (2020). Clinical and biomarker changes of Alzheimer’s disease in adults with down syndrome: A cross-sectional study. The Lancet, 395 (10242), 1988–1997. https://doi.org/10.1016/S0140-6736(20) 30689-9.
  • Guidi, S., Ciani, E., Bonasoni, P., Santini, D., & Bartesaghi, R. (2011). Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with down syndrome. Brain Pathology, 21(4), 361–373. https://doi.org/10.1111/j.1750-3639.2010.00459.x.
  • Hamburg, S., Lowe, B., Startin, C. M., Padilla, C., Coppus, A., Silverman, W., & Strydom, A. (2019). Assessing general cognitive and adaptive abilities in adults with down syndrome: A systematic review. Journal of Neurodevelopmental Disorders, 11(1), 1– 16. https://doi.org/10.1186/s11689-019-9279-8.
  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. https://doi.org/10.1016/s1053-8119(02)91132-8.
  • Kaufman, A. S. (1990). Kaufman brief intelligence test: KBIT. Circle Pines, MN: AGS, American Guidance Service.
  • Keator, D. B., Phelan, M. J., Taylor, L., Doran, E., Krinsky-McHale, S., Price, J., & Lott, I. T. (2020). Down syndrome: Distribution of brain amyloid in mild cognitive impairment. Alzheimer’s & dementia: Diagnosis. Assessment & Disease Monitoring, 12(1), e12013.
  • Koenig, K. A., Bekris, L. M., Ruedrich, S., Weber, G. E., Khrestian, M., Oh, S. H., & Leverenz, J. B. (2021). High-resolution functional connectivity of the default mode network in young adults with down syndrome. Brain Imaging and Behavior, 15(4), 2051–2060.
  • Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. http://www.genome.org/cgi/doi/10.1101/gr.092759.109.
  • Lee, N. R., Nayak, A., Irfanoglu, M. O., Sadeghi, N., Stoodley, C. J., Adeyemi, E., Clasen, L. S., & Pierpaoli, C. (2020). Hypoplasia of cerebellar afferent networks in down syndrome revealed by DTIdriven tensor based morphometry. Scientific Reports, 10(1), 1– 13. https://doi.org/10.1038/s41598-020-61799-1.
  • Li, L., Su, Y. A., Wu, Y. K., Castellanos, F. X., Li, K., Li, J. T., Si, T. M., & Yan, C. G (2021). Eight-week antidepressant treatment reduces functional connectivity in first-episode drug-naïve patients with major depressive disorder. Human Brain Mapping, 42(8), 2593–2605. https://doi.org/10.1002/hbm.25391.
  • McCann, B., Levman, J., Baumer, N., Lam, M. Y., Shiohama, T., Cogger, L., MacDonald, A., Ijner, P., & Takahashi, E. (2021). Structural magnetic resonance imaging demonstrates volumetric brain abnormalities in down syndrome: Newborns to young adults. NeuroImage: Clinical, 32, 102815. https://doi.org/ 10.1016/j.nicl.2021.102815.
  • Perry, J. C., Pakkenberg, B., & Vann, S. D. (2019). Striking reduction in neurons and glial cells in anterior thalamic nuclei of older patients with Down syndrome. Neurobiology of Aging, 75, 54–61.
  • Powell, D., Caban-Holt, A., Jicha, G., Robertson, W., Davis, R., Gold, B. T., & Head, E. (2014). Frontal white matter integrity in adults with down syndrome with and without dementia. Neurobiology of Aging, 35(7), 1562–1569. https://doi.org/10.1016/j. neurobiolaging.2014.01.137.
  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018.
  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2013). Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to carp. Neuroimage, 76. https://doi.org/10.1016/j.neuroimage.2012.03.017.
  • Pujol, J., del Hoyo, L., Blanco-Hinojo, L., de Sola, S., Macia, D., Martínez-Vilavella, G., Amor, M., Deus, J., Rodríguez, J., Farre, M., Dierssen, M., & de la Torre, R. (2015). Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome. Cortex, 64, 148–156. https://doi.org/10.1016/ j.cortex.2014.10.012.
  • Riva, D., Taddei, M., & Bulgheroni, S. (2018). The neuropsychology of basal ganglia. European Journal of Paediatric Neurology, 22 (2), 321–326. https://doi.org/10.1016/j.ejpn.2018.01.009.
  • Rosas, H.D., Lewis, L.R., Mercaldo, N.D., Nasr, S., Brickman, A.M., Siless, V., Yassa, M., Sathishkumar, M., Lott, I., Schupf, ., Silverman, W., Lai, F., & Alzheimer’s Disease in Down Syndrome (ADDS) Consortium. (2021). Altered connectivity of the default mode network in cognitively stable adults with down syndrome:“Accelerated aging” or a prelude to Alzheimer’s disease?. Alzheimer’s & dementia: Diagnosis, assessment & disease monitoring, 13(1), e12105. https://doi.org/10.1002/dad2.12105.
  • Rogers, C. E., Lean, R. E., Wheelock, M. D., & Smyser, C. D. (2018). Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. Journal of Neurodevelopmental Disorders, 10(1), 1–13. https://doi.org/ 10.1186/s11689-018-9253-x.
  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059– 1069. https://doi.org/10.1016/j.neuroimage.2009.10.003.
  • Stagni, F., Giacomini, A., Emili, M., Uguagliati, B., Bonasoni, M. P., Bartesaghi, R., & Guidi, S. (2020). Neuroanatomical alterations in higher-order thalamic nuclei of fetuses with down syndrome. Clinical Neurology and Neurosurgery, 194, 105870.
  • Teipel, S. J., Alexander, G. E., Schapiro, M. B., Möller, H. J., Rapoport, S. I., & Hampel, H. (2004). Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain, 127 (4), 811–824. https://doi.org/10.1093/brain/awh101.
  • Telesford, Q. K., Simpson, S. L., Burdette, J. H., Hayasaka, S., & Laurienti, P. J. (2011). The brain as a complex system: Using network science as a tool for understanding the brain. Brain Connectivity, 1(4), 295–308. https://doi.org/10.1089/brain.2011.0055.
  • Valenti, M., Pino, M. C., Mazza, M., Panzarino, G., Di Paolantonio, C., & Verrotti, A. (2020). Abnormal structural and functional connectivity of the corpus callosum in autism spectrum disorders: A review. Review Journal of Autism and Developmental Disorders, 7 (1), 46–62. https://doi.org/10.1007/s40489-019-00176-9.
  • van den Heuvel, M. P., Stam, C. J., Boersma, M., & Pol, H. H. (2008). Small-world and scale-free organization of voxel-based restingstate functional connectivity in the human brain. Neuroimage, 43 (3), 528–539. https://doi.org/10.1016/j.neuroimage.2008.08.010.
  • Vega, J. N., Hohman, T. J., Pryweller, J. R., Dykens, E. M., & Thornton-Wells, T. A. (2015). Resting-state functional connectivity in individuals with down syndrome and Williams syndrome compared with typically developing controls. Brain Connectivity, 5(8), 461–475. https://doi.org/10.1089/brain.2014.0266.
  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’smallworld’networks. Nature, 393(6684), 440–442. https://doi.org/ 10.1038/30918.
  • Wilson, L. R., Vatansever, D., Annus, T., Williams, G. B., Hong, Y. T., Fryer, T. D., Nestor, P. J., Holland, A. J., & Zaman, S. H. (2019). Differential effects of down’s syndrome and Alzheimer’s neuropathology on default mode connectivity. Human Brain Mapping, 40(15), 4551–4563. https://doi.org/10.1002/hbm.24720.
  • Xia, M., & He, Y. (2013). BrainNet Viewer: a network visualization tool for human brain connectomics. PloS One, 8(7), e68910. https://doi.org/10.1371/journal.pone.0068910.
  • Yan, C., & Zang, Y. (2010). DPARSF: A MATLAB toolbox for" pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.
  • Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q., Zuo, Z., Castellanos, X., & Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage, 76, 183–201. https://doi.org/10.1016/j.neuroimage.2013.03.004.
  • Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing and analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339–351. https://doi.org/10.1007/s12021- 016-9299-4.
  • Yang, H., Chen, X., Chen, Z. B., Li, L., Li, X. Y., Castellanos, F. X., Bai, T., Bo, Q., Cao, J., Chang, Z., Chen, G., Chen, N., Cheng, C., Cheng, Y., Cui, X., Duan, J., Fang, Y., Gong, Q., Guo, W., & Yan, C. G. (2021). Disrupted intrinsic functional brain topology in patients with major depressive disorder. Molecular Psychiatry, 1–9. https://doi.org/10.1038/s41380-021-01247-2.
  • Zhou, Y., Wang, Y., Rao, L. L., Liang, Z. Y., Chen, X. P., Zheng, D., & Li, S. (2014). Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity. Frontiers in Behavioral Neuroscience, 8, 200. https://doi.org/10.3389/ fnbeh.2014.00200.
  • Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M. P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862– 1875. https://doi.org/10.1093/cercor/bhr269.