Miedo (in)fundado al algoritmolas recomendaciones de YouTube y la polarización
- Javier García-Marín 1
- Ignacio-Jesús Serrano-Contreras 2
-
1
Universidad de Granada
info
- 2 Grupo de Investigación SINAI, Universidad de Jaén
ISSN: 1134-3478
Año de publicación: 2023
Título del ejemplar: Educación para la ciudadanía digital: Algoritmos, automatización y comunicación
Número: 74
Páginas: 61-70
Tipo: Artículo
Otras publicaciones en: Comunicar: Revista Científica de Comunicación y Educación
Resumen
Las redes sociales han instaurado una nueva forma de comunicarse y entender las relaciones sociales. A su vez, en lo que podría entenderse como un aspecto negativo, los algoritmos se han construido y desarrollado bajo el paraguas de un amplio abanico de conjeturas y diferentes posiciones al respecto de su capacidad para dirigir y orquestar la opinión pública. El presente trabajo aborda, desde los procesos de ingeniería inversa y de minado semántico, el análisis del sistema de recomendación de YouTube. De este modo, y, en primer lugar, reseñar un resultado clave, las temáticas analizadas de partida no tienden a extremarse. Seguidamente, y mediante el estudio de los temas seleccionados, los resultados no ofrecen una clara resolución de las hipótesis propuestas, ya que, como se ha mostrado en trabajos parecidos, los factores que dan forma al sistema de recomendación son variados y de muy diversa índole. De hecho, los resultados muestran cómo el contenido polarizante no es igual para todos los temas analizados, lo que puede indicar la existencia de moderadores –o acciones por parte de la compañía– que alteran la relación entre las variables. Con todo ello, trabajos como el presente abren la puerta a posteriores incursiones académicas en las que trazar sistematizaciones no lineales y con las que, tal vez, poder arrojar un sustento más neto y sustancial que permita despejar por completo parte de las dudas sobre el papel de los algoritmos y su papel en fenómenos sociales recientes.
Referencias bibliográficas
- Alfano, M., Fard, A.E., Carter, J.A., Clutton, P., & Klein, C. (2021). Technologically scaffolded atypical cognition: The case of YouTube’s recommender system. Synthese, 199(1-2), 835-858. https://doi.org/10.1007/s11229-020-02724-x
- Almagro, M., & Villanueva, N. (2021). Polarización y tecnologías de la Información: Radicales vs. extremistas. Dilemata, 34, 51-69. https://bit.ly/38YwIiH
- Arceneaux, K., & Johnson, M. (2010). Does media fragmentation produce mass polarization? Selective exposure and a new era of minimal effects. In A. Campbell, & L. Martin (Eds.), American Political Science Association 2010 Annual Meeting. SSRN. https://bit.ly/3M1e7jJ
- Arias-Maldonado, M. (2016). La digitalización de la conversación pública: Redes sociales, afectividad política y democracia. Revista de Estudios Políticos, 173, 27-54. https://doi.org/10.18042/cepc/rep.173.01
- Bail, C.A. (2021). Breaking the social media prism: How to make our platforms less polarizing. Princeton University Press. https://doi.org/10.1515/9780691216508
- Banaji, S. (2013). Everyday racism and «My tram experience»: Emotion, civic performance and learning on YouTube. [El racismo cotidiano y «Mi experiencia en un tranvía»: emoción, comportamiento cívico y aprendizaje en YouTube]. Comunicar, 40, 69-78. https://doi.org/10.3916/C40-2013-02-07
- Barberá, P. (2020). Social media, echo chambers, and political polarization. In Social media and democracy: The state of the field, prospects for reform (pp. 34-55). Cambridge University Press. https://doi.org/10.1017/9781108890960
- Berners-Lee, T. (2000). Tejiendo la red. Siglo XXI de España. https://bit.ly/3wZ1NMx
- Berrocal-Gonzalo, S., Campos-Domínguez, E., & Redondo-García, M. (2014). Media prosumers in political communication: Politainment on YouTube. [Prosumidores mediáticos en la comunicación política: El «politainment» en YouTube]. Comunicar, 43, 65-72. https://doi.org/10.3916/C43-2014-06
- Bishop, S. (2018). Anxiety, panic and self-optimization: Inequalities and the YouTube algorithm. Convergence, 24, 69-84. https://doi.org/10.1177/1354856517736978
- Castells, M. (2001). La era de la información: Economía, sociedad y cultura. Alianza Editorial. https://bit.ly/3LXI18w
- Chadwick, A. (2009). Web 2.0: New challenges for the study of e-democracy in an era of informational exuberance. I/S: A. Journal of Law and Policy for the Information Society, 5(1), 9-41. https://bit.ly/3MZopSH
- Chen, A., Nyhan, B., Reifler, J., Robertson, R., & Wilson, C. (2021). Exposure to alternative & extremist content on YouTube. Anti-Defamation League. https://bit.ly/3MZ19E9
- Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for YouTube recommendations. In S. Sen, & W. Geyer (Eds.), Proceedings of the 10th ACM Conference on Recommender Systems (pp. 191-198). Association for Computing Machinery. https://doi.org/10.1145/2959100.2959190
- Davidson, J., Livingston, B., Sampath, D., Liebald, B., Liu, J., Nandy, P., Van-Vleet, T., Gargi, U., Gupta, S., He, Y., & Lambert, M. (2010). The YouTube video recommendation system. In X. Amatriain, M. Torrens, P. Resnick, & M. Zanker (Eds.), Proceedings of the fourth ACM conference on Recommender Systems (pp. 293-296). Association for Computing Machinery. https://doi.org/10.1145/1864708.1864770
- Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., & Zupan, B. (2013). Orange: Data mining toolbox. Python. The Journal of Machine Learning Research, 14(1), 2349-2353. https://bit.ly/3pMIPBR
- Dimopoulos, G., Barlet-Ros, P., & Sanjuas-Cuxart, J. (2013). Analysis of YouTube user experience from passive measurements. In Proceedings of the 9th International Conference on Network and Service Management (CNSM 2013) (pp. 260-267). IEEE. https://doi.org/10.1109/CNSM.2013.6727845
- Goodrow, C. (2021). On YouTube’s recommendation system. Blog YouTube. https://bit.ly/3wWAxhA
- Habermas, J. (1981). Historia y crítica de la opinión pública. Gustavo Gili. https://bit.ly/3O0JOv1
- Hernández, E., Anduiza, E., & Rico, G. (2021). Affective polarization and the salience of elections. Electoral Studies, 69, 102203. https://doi.org/10.1016/j.electstud.2020.102203
- Howard, J.W. (2021). Extreme speech, democratic deliberation, and social media. In The Oxford Handbook of Digital Ethics (pp. 1-22). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198857815.013.10
- Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N., & Westwood, S.J. (2019). The origins and consequences of affective polarization in the United States. Annual Review of Political Science, 22, 129-146. https://doi.org/10.1146/annurev-polisci-051117-073034
- Latorre, M. (2022). Historia de la Web, 1.0, 2.0, 3.0 y 4.0. Blog Marino Latorre. https://bit.ly/38un7QH
- Lilleker, D.G., & Jackson, N. (2008). Politicians and Web 2.0: The current bandwagon or changing the mindset? [Conference]. Politics: Web 2.0 International Conference.
- Luengo, O., García-Marín, J., & Blasio, E. (2021). COVID-19 on YouTube: Debates and polarisation in the digital sphere. [COVID-19 en YouTube: Debates y polarización en la esfera digital]. Comunicar, 69, 9-19. https://doi.org/10.3916/C69-2021-01
- Mcluhan, H.M. (1959). Myth and mass media. Daedalus, 88(2), 339-348. https://bit.ly/3GtIs9v
- Messina, J.P. (2022). New directions in the ethics and politics of speech. Routledge. https://doi.org/10.4324/9781003240785
- Mohan, N. (2022). Inside responsibility: What’s next on our misinfo efforts. Blog YouTube. https://bit.ly/38XAngS
- Nielsen, R., & Fletcher, R. (2020). Democratic creative destruction? The Effect of a changing media landscape on democracy. In Social media and democracy: The state of the field, prospects for reform (pp. 139-162). Cambridge University Press. https://doi.org/10.1017/9781108890960.008
- O’Reilly, T., & Battelle, J. (2009). Web squared: Web 2.0 five years on. O’Reilly Media. https://bit.ly/3wYLBuG
- Pariser, E. (2017). El filtro burbuja: Cómo la web decide lo que leemos y lo que pensamos. Taurus. https://bit.ly/3x0UyDX
- Rasmussen, S.H.R., & Petersen, M. (2022). From echo chambers to resonance chambers: How offline political events enter and are amplified in online networks. PsyArXiv. https://doi.org/10.31234/osf.io/vzu4q
- Rekoff, M.G. (1985). On reverse engineering. IEEE Transactions on Systems, Man, and Cybernetics, 15(2), 244-252. https://doi.org/10.1109/TSMC.1985.6313354
- Serrano-Contreras, I., García-Marín, J., & Luengo, O.G. (2020). Measuring online political dialogue: Does polarization trigger more deliberation? Media and Communication, 8, 63-72. https://doi.org/10.17645/mac.v8i4.3149
- Sunstein, C.R. (2007). Republic.com 2.0. Princeton University Press. https://bit.ly/3a3YFG8
- Terren, L., & Borge-Bravo, R. (2021). Echo chambers on social media: A systematic review of the literature. Review of Communication Research, 9, 99-118. https://doi.org/10.12840/ISSN.2255-4165.028
- Tufekci, Z. (2018). YouTube, the great radicalizer. The New York Times. https://nyti.ms/38VTs2Y
- Van-Bavel, J.J., Rathje, S., Harris, E., Robertson, C., & Sternisko, A. (2021). How social media shapes polarization. Trends in Cognitive Sciences, 25(11), 913-916. https://doi.org/10.1016/j.tics.2021.07.013
- Wigand, R., Wood, J., & Mande, D. (2010). Taming the social network jungle: From Web 2.0 to social media. [Conference]. AMCIS 2010 Proceedings. https://bit.ly/3NJF3Wl
- Yesilada, M., & Lewandowsky, S. (2022). Systematic review: YouTube recommendations and problematic content. Internet Policy Review, (1), 11-11. https://doi.org/10.31234/osf.io/6pv5c