Análisis de errores de estudiantes al interpretar noticias sesgadas con gráficos

  1. Francisco Martínez Ortiz
  2. Felipe Ruz
  3. Elena Molina-Portillo
  4. José Miguel Contreras García
Journal:
Revista Fuentes

ISSN: 1575-7072 2172-7775

Year of publication: 2023

Volume: 25

Volume: 1

Pages: 111-125

Type: Article

More publications in: Revista Fuentes

Abstract

Nowadays, citizens receive a great deal of information from the media, press or social networks. On some occasions, this information includes statistical graphs that contain biases. Therefore, it is essential that citizens develop adequate knowledge, skills and attitudes in order to adopt a critical attitude before accepting them as true. For this reason, framed in the theoretical framework of civic statistics, errors made by 305 students from four different Compulsary Secondary Educationschools when interpreting biased news media items that included graphs were analysed.Neither of the two news items took into account the size of the population, which could lead to erroneous conclusions. It was concluded that a large proportion of the subjects surveyed assume the information they receive to be true, without first criticising it. In addition, they are not able to interpret certain graphics and they also have difficulties in understanding that the context of the news item may be essential for drawing accurateconclusions about it. Knowing about these errors will be fundamental in order to be able to work on them later, with special emphasis on the most common ones, and thus form statistically literate citizens

Bibliographic References

  • Batanero, C. (2002). Los retos de la cultura estadística. Jornadas Interamericanas de Enseñanza de La Estadística.
  • Callingham, R., & Watson, J. (2017). The development of statistical literacy at school. Statistics Education Research Journal, 16(1), 181–201.
  • Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C.-M., Brugnoli, E., Schmidt, A., Zola, P., Zollo, F., & Scala, A. (2020). The COVID-19 Social Media Infodemic. https://doi.org/10.3145/epi.2020.jul.19
  • Contreras, J. M., Martínez-Ortiz, F., Ruz, F., & Molina-Portillo, E. (2021). Disposiciones de ciudadanos españoles ante noticias con gráficos relacionadas con la COVID ‐ 19. SOCIOLOGÍA Y TECNOCIENCIA, 11(Extra_2), 196–212.
  • Contreras, J. M., Molina-Portillo, E., Godino, J., & Batanero, C. (2017). Construcción de un cuestionario para evaluar la interpretación crítica de gráficos estadísticos por futuros profesores. In J. M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. Callejo, & J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 207–216). https://dialnet.unirioja.es/servlet/articulo?codigo=6262028
  • Contreras, L., Carrillo, J., Zakaryan, D., Cinta Muñoz-Catalán, M., & Climent, N. (2012). Un estudio exploratorio sobre las competencias numéricas de los estudiantes para maestro. Bolema, Rio Claro (SP), 26, 433–457.
  • Decreto 40/2015, por el que se establece el currículo de Educación Secundaria Obligatoria y Bachillerato en la Comunidad Autónoma de Castilla-La Mancha.
  • Decreto 54/2014, de 10 de julio, del Consejo de Gobierno, por el que se establece para la Comunidad de Castilla-La Mancha el Currículo de la Educación Primaria, 22 (2014).
  • Engel, J. (2019). Cultura estadística y sociedad. In J. M. Contreras, M. M. Gea, M. M. López Martín, & E. Molina-Portillo (Eds.), Tercer Congreso Internacional Virtual de Educación Estadística. www.ugr.es/local/fqm126/civeest.html
  • Engel, J., Gal, I., & Ridgway, J. (2016). Mathematical literacy and citizen engagement: The role of Civic Statistics. 13th International Conference on Mathematics Education.
  • Fernandes, J. A., & Morais, P. C. (2011). Leitura e Interpretação de Gráficos Estatísticos por Alunos do 9o Ano de Escolaridade. Educação Matemática Pesquisa Revista Do Programa de Estudos Pós-Graduados Em Educação Matemática, 13(1), 95–115.
  • Gal, I. (2002). Adults’ Statistical Literacy: Meanings, Components, Responsibilities. International Statistical Review, 70(1), 1–25. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
  • Groeling, T. (2013). Media bias by the numbers: Challenges and opportunities in the empirical study of partisan news. Annual Review of Political Science, 16, 129–151. https://doi.org/10.1146/annurev-polisci-040811-115123
  • Holmes, P. (1980). Teaching Statistics 11-16 (Sloug: Fou).
  • López-Flamarique, M., & Planillo Artola, S. (2021). El alumnado de educación secundaria frente a las noticias falsas: resultados de una intervención didáctica. Revista Latinoamericana de Tecnología Educativa - RELATEC, 20(1), 39–56. https://doi.org/10.17398/1695-288x.20.1.39
  • Mcmillan, J., & Schumacher, S. (2005). Investigación Educativa (P. Sánchez-López & C. Clemente-Pita (eds.); 5a). Pearson. www.pearsoneducacion.com
  • Ministerio de Educación Cultura y Deporte. (2014a). Real Decreto 1105/2014, de 26 de diciembre, por el que se establecen el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Boletín Oficial Del Estado, 3.
  • Ministerio de Educación Cultura y Deporte. (2014b). Real Decreto 126/2014, de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria. Boletín Oficial Del Estado, 52.
  • Molina-Portillo, E., Contreras, J. M., Godino, J., & Díaz-Levicoy, D. (2017). Interpretación crítica de gráficos estadísticos incorrectos en la sociedad de la comunicación : un desafío para futuros maestros. Enseñanza de Las Ciencias, 0(Extra), 4787–4794.
  • Mulya, N., Nurlaelah, E., & Prabawanto, S. (2018). Students’ statistical literacy on junior high school. International Conference on Mathematics and Science Education of Universitas Pendidikan Indonesia, 3, 710–714. http://science.conference.upi.edu/proceeding/index.php/ICMScE/issue/view/3
  • Nicholson, J., Gal, I., & Ridgway, J. (2018). Understanding Civic Statistics: A Conceptual Framework and its Educational Applications. http://iase-web.org/ISLP/PCS%0D
  • Ridgway, J. (2016). Implications of the Data Revolution for Statistics Education. International Statistical Review, 84(3), 528–549. https://doi.org/10.1111/insr.12110
  • Rosenberg, H., Syed, S., & Rezaie, S. (2020). The Twitter pandemic: The critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic. https://doi.org/10.1017/cem.2020.361