Análisis de sinergias entre Isla de Calor Urbana y Olas de Calor mediante imágenes Sentinel 3 sobre la ciudad de Granada

  1. Hidalgo-García, David 1
  2. Arco-Díaz, Julián 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Revista de teledetección: Revista de la Asociación Española de Teledetección

ISSN: 1133-0953

Año de publicación: 2022

Número: 60

Páginas: 1-15

Tipo: Artículo

DOI: 10.4995/RAET.2022.17128 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de teledetección: Revista de la Asociación Española de Teledetección

Resumen

Comprender las sinergias existentes entre el fenómeno de Isla de Calor Urbano (ICU) y uno de los eventos climáticos extremos como son las olas de calor se ha convertido en uno de los grandes retos de la sociedad que persigue la mejora de la calidad de vida. En esta investigación, se ha determinado la Temperatura de la Superficie Terrestre (TST) y la Isla de Calor Urbana de Superficie (ICUS) mediante imágenes Sentinel-3 de la ciudad de Granada (España) durante los meses de julio y agosto de los años 2019 y 2020. El objetivo es el de determinar las posibles sinergias entre ambos fenómenos en una zona calificada como de alta vulnerabilidad a los efectos del cambio climático. Mediante el método de análisis estadístico Datos de Panel se han obtenido las relaciones multivariantes durante los periodos de ola de calor. Los resultados obtenidos en esta investigación y en línea con estudios anteriores, indican que los valores medios de TST y de ICUS se intensifican bajo condiciones de ola de calor en comparación con los periodos sin ola de calor (Diurnas: ΔTST=2,2 °C y ΔICUS=0,2 °C; Nocturnas: ΔTST=4,4 °C y ΔICUS= 0,3 °C). Se reportan relaciones entre la ICUS y la radiación solar y la dirección del viento que se intensifican en periodos de ola de calor.

Referencias bibliográficas

  • Alcock, I., White, M.P., Lovell, R., Higgins, S.L., Osborne, N.J., Husk, K., Wheeler, B.W. 2015. What accounts for "England's green and pleasant land"? A panel data analysis of mental health and land cover types in rural England. Landscape and Urban Planning, 142, 38-46. https://doi.org/10.1016/j.landurbplan.2015.05.008
  • An, N., Dou, J., González-Cruz, J.E., Bornstein, R.D., Miao, S., Li, L. 2020. An observational case study of synergies between an intense heat wave and the urban heat island in Beijing. Journal of Applied Meteorology and Climatology, 59(4), 605-620. https://doi.org/10.1175/JAMC-D-19-0125.1
  • Anjos, M., Targino, A.C., Krecl, P., Oukawa, G.Y., Braga, R.F. 2020. Analysis of the urban heat island under different synoptic patterns using local climate zones. Building and Environment, 185(September). https://doi.org/10.1016/j.buildenv.2020.107268
  • Ao, X., Wang, L., Zhi, X., Gu, W., Yang, H., Li, D. 2019. Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. Journal of Applied Meteorology and Climatology, 58(9), 1955-1972. https://doi.org/10.1175/JAMC-D-19-0073.1
  • Arnfield, A.J. 2003. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1-26. https://doi.org/10.1002/joc.859
  • Avdan, U., Jovanovska, G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1480307. https://doi.org/10.1155/2016/1480307
  • Basara, J.B., Basara, H.G., Illston, B.G., Crawford, K.C. 2010. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Advances in Meteorology, 2010, 1-10. https://doi.org/10.1155/2010/230365
  • Carvalho, D., Martins, H., Marta-Almeida, M., Rocha, A., Borrego, C. 2017. Urban resilience to future urban heat waves under a climate change scenario: A case study for Porto urban area (Portugal). Urban Climate, 19, 1-27. https://doi.org/10.1016/j.uclim.2016.11.005
  • Cotlier, G.I., Jimenez, J.C. 2022. The Extreme Heat Wave over Western North America in 2021: An Assessment by Means of Land Surface Temperature. Remote Sensing, 14(3). https://doi.org/10.3390/rs14030561
  • Chen, Y., Li, X., Zheng, Y., Guan, Y., & Liu, X. (2011). Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005-2008. Landscape and Urban Planning, 102(1), 33-42. https://doi.org/10.1016/j.landurbplan.2011.03.007
  • De Boeck, H.J., Dreesen, F.E., Janssens, I.A., Nijs, I. 2010. Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology, 16(7), 1992-2000. https://doi.org/10.1111/j.1365-2486.2009.02049.x
  • de Castro, M., Gallardo, C., Jylha, K., Tuomenvirta, H. 2007. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81(S1), 329-341. https://doi.org/10.1007/s10584-006-9224-1
  • Fang, L., Tian, C. 2020. Construction land quotas as a tool for managing urban expansion. Landscape and Urban Planning, 195(May 2019), 103727. https://doi.org/10.1016/j.landurbplan.2019.103727
  • Founda, D., Pierros, F., Petrakis, M., Zerefos, C. 2015. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmospheric Research, 161-162, 1-13. https://doi.org/10.1016/j.atmosres.2015.03.016
  • Founda, D., Santamouris, M. 2017. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer 2012. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-11407-6
  • Gallo, K., Hale, R., Tarpley, D., Yu, Y. 2011. Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. Journal of Applied Meteorology and Climatology, 50(3), 767-775. https://doi.org/10.1175/2010JAMC2460.1
  • Grumm, R.H. 2011. The central European and russian heat event of July-August 2010. Bulletin of the American Meteorological Society, 92(10), 1285-1296. https://doi.org/10.1175/2011BAMS3174.1
  • House, M., Santamouris, M. 2011. Advances in Building Energy Research Heat Island Research in Europe: The State of Heat Island Research in Europe: The State of the Art. July 2012, 37-41.
  • Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., … He, K. 2021. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, 8(2). https://doi.org/10.1093/nsr/nwaa137
  • Jiang, P., Fu, X., Fan, Y., Klemeš, J., Chen, P., Ma, S., Zhang, W. 2021. Spatial-temporal potential exposure risk analytics and urban sustainability impacts related to COVID-19 mitigation: A perspective from car mobility behaviour. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123673
  • Jiang, S., Lee, X., Wang, J., Wang, K. 2019. Amplified Urban Heat Islands during Heat Wave Periods. Journal of Geophysical Research: Atmospheres, 124(14), 7797-7812. https://doi.org/10.1029/2018JD030230
  • Lai, J., Zhan, W., Huang, F., Voogt, J., Bechtel, B., Allen, M., Peng, S., Hong, F., Liu, Y., Du, P. 2018. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sensing of Environment, 217(August), 203-220. https://doi.org/10.1016/j.rse.2018.08.021
  • Li, D., Bou-Zeid, E. 2013. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051-2064. https://doi.org/10.1175/JAMC-D-13-02.1
  • Li, D., Sun, T., Liu, M., Yang, L., Wang, L., Gao, Z. 2015. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 10(5). https://doi.org/10.1088/1748-9326/10/5/054009
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J. 2011. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249-3263. https://doi.org/10.1016/j.rse.2011.07.008
  • Luo, M., Lau, N.C. 2018. Increasing Heat Stress in Urban Areas of Eastern China: Acceleration by Urbanization. Geophysical Research Letters, 45(23), 13,060-13,069. https://doi.org/10.1029/2018GL080306
  • Masoudi, M., Tan, P.Y., Fadaei, M. 2021. The effects of land use on spatial pattern of urban green spaces and their cooling ability. Urban Climate, 35(November 2020). https://doi.org/10.1016/j.uclim.2020.100743
  • MCGregor, G.R., Felling, M., Wolf, T., Gosling, S. 2007. The social impacts of heat waves. Bristol: Environment Agency.
  • Meehl, G.A., Tebaldi, C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 3055686, 994-997. https://doi.org/10.1126/science.1098704
  • Mukherjee, F., Singh, D. 2020. Assessing Land Use-Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Systems and Environment, 4(2), 385-407. https://doi.org/10.1007/s41748-020-00155-9
  • Oke, T.R. 1987. Boundary layer climates. Routledge.
  • Oliveira, A., Lopes, A., Niza, S. 2020. Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Climate, 33(May 2019), 100631. https://doi.org/10.1016/j.uclim.2020.100631
  • Poumadère, M., Mays, C., Le Mer, S., Blong, R. 2005. The 2003 heat wave in France: Dangerous climate change here and now. Risk Analysis, 25(6), 1483-1494. https://doi.org/10.1111/j.1539-6924.2005.00694.x
  • Ramamurthy, P., Bou-Zeid, E. 2017. Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research, 122(1), 168-178. https://doi.org/10.1002/2016JD025357
  • Robine, J.M., Cheung, S.L.K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.P., Herrmann, F.R. 2008. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus - Biologies, 331(2), 171-178. https://doi.org/10.1016/j.crvi.2007.12.001
  • Rongali, G., Keshari, A.K., Gosain, A.K., Khosa, R. 2018. A mono-window algorithm for land surface temperature estimation from landsat 8 thermal infrared sensor data: A case study of the beas river basin, India. Pertanika Journal of Science and Technology, 26(2), 829-840. https://doi.org/10.1007/s41651-018-0021-y
  • Saaroni, H., Amorim, J.H., Hiemstra, J.A., Pearlmutter, D. 2018. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 24(October 2017), 94-110. https://doi.org/10.1016/j.uclim.2018.02.001
  • Santamouris, M. 2020. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207. https://doi.org/10.1016/j.enbuild.2019.109482
  • Semenza, J., Rubin, C., Falter, K., Selanikio, J., Flanders, W., Howe, H., Wilhelm, J. 1996. Heat-related deaths during the July 1995 heat wave in Chicago. The New England Journal o f Medicine., 335(2)(July 1995), 86-90. https://doi.org/10.1056/NEJM199607113350203
  • Sobrino, J.A., Irakulis, I. 2020. A methodology for comparing the surface urban heat Island in selected urban agglomerations around the world from Sentinel-3 SLSTR data. Remote Sensing, 12(12), 1-31. https://doi.org/10.3390/rs12122052
  • Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Ruescas, A.B., Danne, O., Brockmann, C., Ghent, D., Remedios, J., North, P., Merchant, C., Berger, M., Mathieu, P.P., Göttsche, F.M. 2016. Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote Sensing of Environment, 179, 149-161. https://doi.org/10.1016/j.rse.2016.03.035
  • Sobrino, J.A., Oltra-Carrió, R., Sòria, G., JiménezMuñoz, J.C., Franch, B., Hidalgo, V., Mattar, C., Julien, Y., Cuenca, J., Romaguera, M., Gómez, J.A., de Miguel, E., Bianchi, R., & Paganini, M. 2013. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. International Journal of Remote Sensing, 34(9-10), 3177-3192. https://doi.org/10.1080/01431161.2012.716548
  • Song, J., Chen, W., Zhang, J., Huang, K., Hou, B., Prishchepov, A.V. 2020. Effects of building density on land surface temperature in China: Spatial patterns and determinants. Landscape and Urban Planning, 198(March), 103794. https://doi.org/10.1016/j.landurbplan.2020.103794
  • Stewart, I.D., Oke, T.R. 2012. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  • Tewari, M., Yang, J., Kusaka, H., Salamanca, F., Watson, C., Treinish, L. (2019). Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environmental Research Letters, 14(3). https://doi.org/10.1088/1748-9326/aaf431
  • United Nations Organization. 2021 June ends with exceptional heat. Available from: https://public.wmo.int/en/media/news/june-ends-exceptional-heat
  • Valor, E., Meneu, V., Caselles, V. 2001. Daily air temperature and electricity load in Spain. Journal of Applied Meteorology, 40(8), 1413-1421. https://doi.org/10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2
  • van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B.G., Elbers, J.A., van Driel, B.L., Holtslag, A.A.M. 2015. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 83, 91-103. https://doi.org/10.1016/j.buildenv.2014.08.029
  • Wang, K., Jiang, S., Wang, J., Zhou, C., Wang, X., Lee, X. 2017. Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. Journal Geophysical Research Atmospheric., 122(4449), 2131-2154. https://doi.org/10.1002/ 2016JD025304
  • Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., La Rosa, D. 2019. Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694. https://doi.org/10.1016/j.scitotenv.2019.133742
  • Xia, J., Tu, K., Yan, Z., Qi, Y. 2016. The super-heat wave in eastern China during July-August 2013: A perspective of climate change. International Journal of Climatology, 36(3), 1291-1298. https://doi.org/10.1002/joc.4424
  • Yang, C., Wang, R., Zhang, S., Ji, C., Fu, X. 2019. Characterizing the hourly variation of urban heat islands in a snowy climate city during summer. International Journal of Environmental Research and Public Health, 16(14). https://doi.org/10.3390/ijerph16142467
  • Yang, C., Yan, F., Zhang, S. (2020a). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265(March), 110563. https://doi.org/10.1016/j.jenvman.2020.110563
  • Yang, J., Zhou, J., Göttsche, F.-M., Long, Z., Ma, J., Luo, R. (2020b). Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. International Journal of Applied Earth Observation and Geoinformation, 91(April), 102136. https://doi.org/10.1016/j.jag.2020.102136
  • Zhao, L., Lee, X., Smith, R.B., Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508), 216-219. https://doi.org/10.1038/nature13462
  • Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aa9f73
  • Zhou, D., Zhao, S., Zhang, L., Sun, G., Liu, Y. (2015). The footprint of urban heat island effect in China. Scientific Reports, 5, 2-12. https://doi.org/10.1038/srep11160