Análisis espacio temporal de la Isla de Calor Urbana mediante imágenes satelitales: capitales de Andalucía

  1. Hidalgo García, David 1
  2. Arco Díaz, Julián 1
  1. 1 Universidad de Granad
Revista:
ACE: architecture, city and environment

ISSN: 1886-4805

Año de publicación: 2022

Número: 49

Páginas: 10374

Tipo: Artículo

DOI: 10.5821/ACE.17.49.10374 DIALNET GOOGLE SCHOLAR lock_openUPCommons editor

Otras publicaciones en: ACE: architecture, city and environment

Resumen

La búsqueda de nuevas técnicas que permitan determinar de forma económica y precisa el fenómeno de alteración de clima urbano denominado Isla de Calor Urbana (ICU) se ha convertido en uno de los grandes retos de la sociedad. Su conocimiento sobre las urbes permitiría la implantación de medidas de mitigación y resiliencia que tiendan a minimizar sus efectos y el coste económico que conlleva. En esta investigación, se ha determinado la Temperatura de la Superficie Terrestre (TST) y la ICU mediante imágenes satelitales Séntinel 3 de las ocho capitales de Andalucía (España) durante el año 2020. Estas se ubican en una zona calificada como de alta vulnerabilidad a los efectos del cambio climático lo que unido al empleo de zonas climáticas locales (ZCL) permite que los resultados puedan ser extrapolados a otras ciudades con iguales tipologías de zonas climáticas. Los resultados obtenidos indican que durante la mañana se produce en las ciudades estudiadas una isla de enfriamiento urbano de temperatura media -0,76 ºC y durante la noche una ICU de temperatura media 1,29 ºC. Ambas presentan mayores intensidades en las ZCL compactas de media y baja densidad en contraposición con las ZCL abiertas e industriales. La variabilidad estacional de la ICU diurna se intensifica durante el verano y el invierno y la nocturna durante el invierno y el otoño. Se comprueba la existencia de relaciones diurnas negativas significativas al 99% (p<0,01) entre la ICU y la contaminación ambiental y de relaciones nocturnas, en iguales condiciones, entre la ICU y la TST, fracción vegetal (Pv) y la contaminación.

Referencias bibliográficas

  • Alcock, I., White, M. P., Lovell, R., Higgins, S. L., Osborne, N. J., Husk, K., & Wheeler, B. W. (2015). What accounts for “England’s green and pleasant land”? A panel data analysis of mental health and land cover types in rural England. Landscape and Urban Planning, 142, 38-46. DOI: https://doi.org/10.1016/j.landurbplan.2015.05.008
  • Anjos, M., Targino, A. C., Krecl, P., Oukawa, G. Y., & Braga, R. F. (2020). Analysis of the urban heat island under different synoptic patterns using local climate zones. Building and Environment, 185(September). DOI: https://doi.org/10.1016/j.buildenv.2020.107268
  • Arbuthnott, K. G., & Hajat, S. (2017). The health effects of hotter summers and heat waves in the population of the United Kingdom: A review of the evidence. Environmental Health: A Global Access Science Source, 16(Suppl 1), 1-13. DOI: https://doi.org/10.1186/s12940-017-0322-5
  • Arellano, B., García, A., & Roca, J. (2019). Definición espacial del efecto de enfriamiento de los espacios verdes urbanos mediante teledetección: Estudios de caso en el Área Metropolitana de Barcelona. International Conference Virtual City and Territory, (13), 1-20. DOI: https://doi.org/10.5821/ctv.8956
  • Arellano, B., & Roca, J. (2021). Urban-CLIMPLAN. La isla de calor urbana en la región metropolitana de Barcelona. Estudio de la intensidad de la UHI diurna y nocturna a partir de diversos sensores. ACE: Architecture, City and Environment, 15(45), 10381. DOI: https://doi.org/10.5821/ace.15.45.10381
  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1-26. DOI: https://doi.org/10.1002/joc.859
  • Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 1-8. DOI: https://doi.org/10.1155/2016/1480307
  • Bereitschaft, B., & Debbage, K. (2013). Urban form, air pollution, and CO2 emissions in large U.S. metropolitan areas. Professional Geographer, 65(4), 612-635. DOI: https://doi.org/10.1080/00330124.2013.799991
  • Brousse, O., Georganos, S., Demuzere, M., Vanhuysse, S., Wouters, H., Wolff, E., Linard, C., van Lipzig, N. P. M., & Dujardin, S. (2019). Using Local Climate Zones in Sub-Saharan Africa to tackle urban health issues. Urban Climate, 27, 227-242. DOI: https://doi.org/10.1016/j.uclim.2018.12.004
  • Ceplová, N., Kalusová, V., & Lososová, Z. (2017). Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landscape and Urban Planning, 159, 15-22. DOI: https://doi.org/10.1016/j.landurbplan.2016.11.004
  • Chen, Y., Li, X., Zheng, Y., Guan, Y., & Liu, X. (2011). Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005-2008. Landscape and Urban Planning, 102(1), 33-42. DOI: https://doi.org/10.1016/j.landurbplan.2011.03.007
  • Coleman, R. W., Stavros, N., Hulley, G., & Parazoo, N. (2020). Comparison of thermal infrared-derived maps of irrigated and non-irrigated vegetation in urban and non-urban areas of southern California. Remote Sensing, 12(24), 1-19. DOI: https://doi.org/10.3390/rs12244102
  • Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., Mutlow, C., Munro, G., Nightingale, T., Smith, D., Bianchi, S., Nicol, P., Kirschstein, S., Hennig, T., Engel, W., Frerick, J., & Nieke, J. (2010). SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. Journal of Modern Optics, 57(18), 1815-1830. DOI: https://doi.org/10.1080/09500340.2010.503010
  • Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M. N., & Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8(11), 972-980. DOI: https://doi.org/10.1038/s41558-018-0299-2
  • De Castro, M., Gallardo, C., Jylha, K., & Tuomenvirta, H. (2007). The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81(SUPPL. 1), 329-341. DOI: https://doi.org/10.1007/s10584-006-9224-1
  • Diallo, J., Lacaze, B., & Comby, J. (2015). Land surface temperature in the urban area of Lyon metropolis: A comparative study of remote sensing data and MesoNH model simulation. Joint Urban Remote Sensing Event, 2-5. DOI: https://doi.org/10.1109/JURSE.2015.7120528
  • Dos Santos, R. & De Costa, T. (2018). Urban heat Island analysis using the ‘local climate zone’ scheme in presidente prudente, Brazil. Investigaciones geográficas, 69, 107-118. DOI: https://doi.org/10.14198/INGEO2018.69.07
  • Du, J., Xiang, X., Zhao, B., & Zhou, H. (2020). Impact of urban expansion on land surface temperature in Fuzhou, China using Landsat imagery. Sustainable Cities and Society, 61(June), 102346. DOI: https://doi.org/10.1016/j.scs.2020.102346
  • Dwivedi, A., & Mohan, B. K. (2018). Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sensing Applications: Society and Environment, 10, 56-69. DOI: https://doi.org/10.1016/j.rsase.2018.01.003
  • Emmanuel, R., & Krüger, E. (2012). Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Building and Environment, 53, 137-149. DOI: https://doi.org/10.1016/j.buildenv.2012.01.020
  • Equere, V., Mirzaei, P. &Riffat, S. (2020). Definition of a new morphological parameter to improve prediction of urban heat island. Sustainable Cities and Society, 56, 102021. DOI: https://doi.org/10.1016/j.scs.2020.102021
  • Fang, L., & Tian, C. (2020). Construction land quotas as a tool for managing urban expansion. Landscape and Urban Planning, 195, 103727. DOI: https://doi.org/10.1016/j.landurbplan.2019.103727
  • Feizizadeh, B., & Blaschke, T. (2013). Examining Urban heat Island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1749-1756. DOI: https://doi.org/10.1109/JSTARS.2013.2263425
  • Founda, D., Pierros, F., Petrakis, M., & Zerefos, C. (2015). Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmospheric Research, 161-162, 1-13. DOI: https://doi.org/10.1016/j.atmosres.2015.03.016
  • Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7(1), 1–11. DOI: https://doi.org/10.1038/s41598-017-11407-6
  • Fu, P., & Weng, Q. (2018). Variability in annual temperature cycle in the urban areas of the United States as revealed by MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 65–73. DOI: https://doi.org/10.1016/j.isprsjprs.2018.09.003
  • Gallo, K., Hale, R., Tarpley, D., & Yu, Y. (2011). Evaluation of the relationship between air and land surface temperature under clearand cloudy-sky conditions. Journal of Applied Meteorology and Climatology, 50(3), 767–775. DOI: https://doi.org/10.1175/2010JAMC2460.1
  • Gaur, A., Eichenbaum, M. K., & Simonovic, S. P. (2018). Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change. Journal of Environmental Management, 206, 145-157. DOI: https://doi.org/10.1016/j.jenvman.2017.10.002
  • Guo, A., Yang, J., Xiao, X., Xia, C., Jin, C., & Li, X. (2020). Influences of urban spatial form on urban heat island effects at the community level in China. Sustainable Cities and Society, 53, 101972. DOI: https://doi.org/10.1016/j.scs.2019.101972
  • Hu, Y., Dai, Z., & Guldmann, J. M. (2020). Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. Journal of Environmental Management, 266(11), 110424. DOI: https://doi.org/10.1016/j.jenvman.2020.110424
  • Hua, L., Zhang, X., Nie, Q., Sun, F., & Tang, L. (2020). The impacts of the expansion of urban impervious surfaces on urban heat islands in a coastal city in China. Sustainability, 12(2). DOI: https://doi.org/10.3390/su12020475
  • Jiang, S., Lee, X., Wang, J., & Wang, K. (2019). Amplified Urban Heat Islands during Heat Wave Periods. Journal of Geophysical Research: Atmospheres, 124(14), 7797–7812. DOI: https://doi.org/10.1029/2018JD030230
  • Keramitsoglou, I., Kiranoudis, C. T., Ceriola, G., Weng, Q., & Rajasekar, U. (2011). Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sensing of Environment, 115(12), 3080–3090. DOI: https://doi.org/10.1016/j.rse.2011.06.014
  • Khamchiangta, D., & Dhakal, S. (2019). Physical and non-physical factors driving urban heat island: Case of Bangkok Metropolitan Administration, Thailand. Journal of Environmental Management, 248(July), 109285. DOI: https://doi.org/10.1016/j.jenvman.2019.109285
  • Kovats, R. S., Campbell-Lendrum, D., & Matthies, F. (2005). Climate change and human health: Estimating avoidable deaths and disease. Risk Analysis, 25(6), 1409-1418. DOI: https://doi.org/10.1111/j.1539-6924.2005.00688.x
  • Labra, R. (2014). Zero panel data guide. (Cátedra UA). Recuperado de file:///U:/Maguilera/Documentos Personales MAGUILERA/Master M3F/Trabajo Fin M3F/Revisión para paper/Referencias/Stata/16_Guia CERO para datos de panel_Un enfoque practico.pdf
  • Lemus, M., Martin, J., Moreno, M. C., & Lopez, J. A. (2020). Estimating Barcelona’s metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature. Science of the Total Environment, 699, 134307. DOI: https://doi.org/10.1016/j.scitotenv.2019.134307
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249– 3263. DOI: https://doi.org/10.1016/j.rse.2011.07.008
  • Li, T., & Meng, Q. (2018). A mixture emissivity analysis method for urban land surface temperature retrieval from Landsat 8 data. Landscape and Urban Planning, 179(July), 63-71. DOI: https://doi.org/10.1016/j.landurbplan.2018.07.010
  • Lin, W., Yu, T., Chang, X., Wu, W., & Zhang, Y. (2015). Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 134, 66–75. DOI: https://doi.org/10.1016/j.landurbplan.2014.10.012
  • Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sensing, 3(7), 1535-1552. DOI: https://doi.org/10.3390/rs3071535
  • Liu, Y., Yu, Y., Yu, P., Göttsche, F. M., & Trigo, I. F. (2015). Quality assessment of S-NPP VIIRS land surface temperature product. Remote Sensing, 7(9), 12215-12241. DOI: https://doi.org/10.3390/rs70912215
  • Macintyre, H. L., Heaviside, C., Taylor, J., Picetti, R., Symonds, P., Cai, X. M., & Vardoulakis, S. (2018). Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – Implications for health protection. Science of the Total Environment, 610-611, 678-690. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.062
  • Mallick, J., Rahman, A., & Singh, C. K. (2013). Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advances in Space Research, 52(4), 639-655. DOI: https://doi.org/10.1016/j.asr.2013.04.025
  • McMillin, L. M. (1975). Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, 80(36), 5113–5117. DOI: https://doi.org/10.1029/jc080i036p05113
  • Mukherjee, F., & Singh, D. (2020). Assessing Land Use–Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Systems and Environment, 4(2), 385–407. DOI: https://doi.org/10.1007/s41748-020-00155-9
  • Oke, T. R. (1987). Boundary layer climates (Routledge).
  • ONU. (2018). 68% of the world population projected to live in urban areas by 2050, says UN. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanizationprospects.html
  • Pérez Cambra, M., & Roca J. (2018). WSUDs (Water Sensitive Urban Design Systems) thermal behavior. En: Libro de proceedings, CTV 2018. XII Congreso Internacional Ciudad y Territorio Virtual. “Ciudades y Territorios Inteligentes”. UNCuyo, Mendoza, 5-7 septiembre 2018. Barcelona: CPSV, p. 401-416. DOI: https://doi.org/10.5821/ctv.8254
  • Prikaziuk, E., & van der Tol, C. (2019). Global sensitivity analysis of the SCOPE model in Sentinel-3 Bands: Thermal domain focus. Remote Sensing, 11(20). DOI: https://doi.org/10.3390/rs11202424
  • Qiu, C., Schmitt, M., Mou, L., Ghamisi, P., & Zhu, X.X., (2018). Feature Importance Analysis for Local Climate Zone Classification Using a Residual Convolutional Neural Network with Multi-Source Datasets. Remote Sensing, 10, 1572. DOI: https://doi.org/10.3390/rs10101572
  • Ramamurthy, P., & Bou-Zeid, E. (2017). Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research, 122(1), 168-178. DOI: https://doi.org/10.1002/2016JD025357
  • Rasilla, D., Allende, F., Martilli, A., & Fernández, F. (2019). Heat waves and human well-being in Madrid (Spain). Atmosphere, 10(5), 1-21. DOI: https://doi.org/10.3390/atmos10050288
  • Remedios, J., Emsley, S. (2012). Sentinel-3 Optical Products and Algorithm Definition Land Surface Temperature. 24.
  • Rongali, G., Keshari, A. K., Gosain, A. K., & Khosa, R. (2018). A mono-window algorithm for land surface temperature estimation from landsat 8 thermal infrared sensor data: A case study of the beas river basin, India. Pertanika Journal of Science and Technology, 26(2), 829-840.
  • Roy, S., Pandit, S., Eva, E. A., Bagmar, M. S. H., Papia, M., Banik, L., Dube, T., Rahman, F., & Razi, M. A. (2020). Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data. Urban Climate, 32(January), 100593. DOI: https://doi.org/10.1016/j.uclim.2020.100593
  • Ruescas, A. B., Danne, O., Fomferra, N., & Brockmann, C. (2016). The land surface temperature synergistic processor in beam: A prototype towards sentinel-3. Data, 1(3), 1-14. DOI: https://doi.org/10.3390/data1030018
  • Rui, Y., Wang, L., Huang, X., Zhang, W., Li, J., & Niu, Z., (2018). Interannual variations in surface urban heat island and associated drivers in China. Journal of Environmental Management, 222, 86-94. DOI: https://doi.org/10.1016/j.jenvman.2018.05.024
  • Saaroni, H., Amorim, J. H., Hiemstra, J. A., & Pearlmutter, D. (2018). Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 24, 94-110. DOI: https://doi.org/10.1016/j.uclim.2018.02.001
  • Salvati, A., Coch, H, CEcere, C. (2016). Urban heat island prediction in the Mediterranean context: an evaluation of the urban weather generator model. ACE: Architecture, city and Environment, vol 11, nº32, pp: 135-156. DOI: https://doi.org/10.5821/ace.11.32.4836
  • Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207. DOI: https://doi.org/10.1016/j.enbuild.2019.109482
  • Sarrat, C., Lemonsu, A., Masson, V., & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40(10), 1743-1758. DOI: https://doi.org/10.1016/j.atmosenv.2005.11.037
  • Schneider, A., Friedl, M. A., & Potere, D. (2010). Mapping global urban areas using MODIS 500-m data: New methods and datasets based on “urban ecoregions. Remote Sensing of Environment, 114(8), 1733- 1746. DOI: https://doi.org/10.1016/j.rse.2010.03.003
  • Scolozzi, R., & Geneletti, D. (2012). A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environmental Impact Assessment Review, 36, 9-22. DOI: https://doi.org/10.1016/j.eiar.2012.03.001
  • Seto, K. C., & Kaufmann, R. K. (2003). Modeling the drivers of urban land use change in the Pearl River Delta, China: Integrating remote sensing with socioeconomic data. Land Economics, 79(1), 106-121. DOI: https://doi.org/10.2307/3147108
  • Shafizadeh-Moghadam, H., Weng, Q., Liu, H., & Valavi, R. (2020). Modeling the spatial variation of urban land surface temperature in relation to environmental and anthropogenic factors: a case study of Tehran, Iran. GIScience and Remote Sensing, 57(4), 483-496. DOI: https://doi.org/10.1080/15481603.2020.1736857
  • Smith, R. J., & Hsiao, C. (1988). Analysis of Panel Data. Económica, 55(218), 284. DOI: https://doi.org/10.2307/2554479
  • Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Ruescas, A. B., Danne, O., Brockmann, C., Ghent, D., Remedios, J., North, P., Merchant, C., Berger, M., Mathieu, P. P., & Göttsche, F. M. (2016). Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote Sensing of Environment, 179, 149-161. DOI: https://doi.org/10.1016/j.rse.2016.03.035
  • Song, J., Chen, W., Zhang, J., Huang, K., Hou, B., & Prishchepov, A. V. (2020). Effects of building density on land surface temperature in China: Spatial patterns and determinants. Landscape and Urban Planning, 198(March), 103794. DOI: https://doi.org/10.1016/j.landurbplan.2020.103794
  • Song, J., Lin, T., Li, X., & Prishchepov, A. V. (2018). Mapping urban functional zones by integrating very high spatial resolution remote sensing imagery and points of interest: A case study of Xiamen, China. Remote Sensing, 10(11). DOI: https://doi.org/10.3390/rs10111737
  • Stewart, I. D., & Oke, T., (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. DOI: https://doi.org/10.1175/BAMS-D-11-00019.1
  • Stewart, I. D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2), 200-217. DOI: https://doi.org/10.1002/joc.2141
  • Stewart, I., & Oke, T., (2009). Classifying urban climate field sites by “local climate zones”: the case of nagano, japan. The Seventh International Conference on Urban Climate, July, 1–5.
  • Tan, M., & Li, X., (2015). Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat International, 49, 100-106. DOI: https://doi.org/10.1016/j.habitatint.2015.05.013
  • Tsou, J., Zhuang, J., Li, Y., & Zhang, Y. (2017). Urban Heat Island Assessment Using the Landsat 8 Data: A Case Study in Shenzhen and Hong Kong. Urban Science, 1(1), 10. DOI: https://doi.org/10.3390/urbansci1010010
  • van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B.G., Elbers, J.A., Van Driel, B.L., Holtslag, A.A.M., (2015). Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 83, 91-103. DOI: https://doi.org/10.1016/j.buildenv.2014.08.029
  • Walawender, J. P., Szymanowski, M., Hajto, M. J., & Bokwa, A. (2014). Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data. Pure and Applied Geophysics, 171(6), 913-940. DOI: https://doi.org/10.1007/s00024-013-0685-7
  • Wang, J., & Ouyang, W. (2017). Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification. Journal of Environmental Management, 187, 239-252. DOI: https://doi.org/10.1016/j.jenvman.2016.11.059
  • Wang, M., Madden, M., & Liu, X. (2017). Exploring the relationship between urban forms and CO2 emissions in 104 Chinese cities. Journal of Urban Planning and Development, 143(4), 1-8. DOI: https://doi.org/10.1061/(ASCE)UP.1943-5444.0000400
  • Ward, K., Lauf, S., Kleinschmit, B., & Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment, 569-570, 527-539. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.119
  • Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., & La Rosa, D. (2019). Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694. DOI: https://doi.org/10.1016/j.scitotenv.2019.133742
  • Xue, J., Anderson, M. C., Gao, F., Hain, C., Sun, L., Yang, Y., Knipper, K. R., Kustas, W. P., Torres-Rua, A., & Schull, M. (2020). Sharpening ECOSTRESS and VIIRS land surface temperature using harmonized Landsat-Sentinel surface reflectances. Remote Sensing of Environment, 251, 112055. DOI: https://doi.org/10.1016/j.rse.2020.112055
  • Yang, C., Wang, R., Zhang, S., Ji, C., & Fu, X. (2019). Characterizing the hourly variation of urban heat islands in a snowy climate city during summer. International Journal of Environmental Research and Public Health, 16(14). DOI: https://doi.org/10.3390/ijerph16142467
  • Yang, C., Yan, F., & Zhang, S. (2020a). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265, 110563. DOI: https://doi.org/10.1016/j.jenvman.2020.110563
  • Yang, J., Zhou, J., Göttsche, F.-M., Long, Z., Ma, J., & Luo, R. (2020b). Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. International Journal of Applied Earth Observation and Geoinformation, 91, 102136. DOI: https://doi.org/10.1016/j.jag.2020.102136
  • Yao, R., Wang, L., Huang, X., Zhang, W., Li, J., & Niu, Z. (2018). Interannual variations in surface urban heat island intensity and associated drivers in China. Journal of Environmental Management, 222(April), 86-94. DOI: https://doi.org/10.1016/j.jenvman.2018.05.024
  • Yu, Y., Liu, Y., Yu, P., Liu, Y., & Yu, P. (2017). Land surface temperature product development for JPSS and GOES-R missions. Comprehensive Remote Sensing, 1-9, 284-303. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10522-6
  • Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., & Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letters, 13(3). DOI: https://doi.org/10.1088/1748-9326/aa9f73
  • Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51-61. DOI: https://doi.org/10.1016/j.rse.2014.05.017
  • Zhou, D., Zhao, S., Zhang, L., Sun, G., & Liu, Y. (2015). The footprint of urban heat island effect in China. Scientific Reports, 5, 2-12. DOI: https://doi.org/10.1038/srep11160