A re-investigation on the historical cervantite-type antimony ochres

  1. Javier Garcia-Guinea
  2. Fernando Gervilla
  3. Fernando Garrido
  4. Virgilio Correcher
  5. Jose F. Marco
  6. Laura Tormo
Journal:
Estudios geológicos

ISSN: 0367-0449

Year of publication: 2023

Volume: 79

Issue: 1

Type: Article

DOI: 10.3989/EGEOL.44775.621 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Estudios geológicos

Abstract

Antimony ocher are yellowish antimony oxo-hydroxides formed by weathering of stibnite (Sb2S3). They occur naturally as single crystallized phases in the isometric system with pyrochlore type structure, containing some Ca and water molecules in the structure, its range in composition can be expressed by the formula: Sb5+2-x (Sb3+, Ca)y (O, OH, H2O)6-7, in which y is generally near 1, and x ranges from 0 to 1. Furthermore, Sb-ochres use to include substitutional As, Fe, Ta, Ti, Cu and others. This chemical variability keeping the structure has generated historical confusion of names of equivalent minerals with similar X-ray diffraction patterns being necessary the use of additional techniques. The mineral-type Cervantite from Cervantes (Spain) (Ca, Sb3+)2(Sb5+)2O6(OH) was disapproved at 1954 and re-approved at 1962 as α-Cervantite Sb3+Sb5+O4analyzing synthetic and natural antimony ochres from other localities, e.g., Brasina (Serbia) by X-ray diffraction. We herein characterize both historical specimens-type from Cervantes (Lugo, Spain) and Zajaca-Stolice (Brasina, Serbia) from the chemical-elemental, structural, thermal and speciation points of view, together with a vibrational study by Raman and FTIR, since the X-ray diffraction patterns of isometric samples with pyrochlore-type structure are excessively similar among them. The Cervantes specimen-type could be named hydroxycalcioromeite (Ca, Sb3+)2(Sb5+)2O6(OH) whereas the Brasina specimen-type Ca2(Sb5+)4O12(OH)2 is very similar but lacking Sb3+; both specimens contain Ca and hydrous components, faraway of the official anhydrous orthorhombic α-Cervantite (Sb3+Sb5+O4) setting. Micro-Raman was essential determining molecular phases and Sb-O bond vibrations, FTIR and DTA-TG finding hydroxyl groups and XPS defining Sb speciation.

Funding information

Funders

Bibliographic References

  • Abdel-Galil E.A.; El-Kenany W.M. & Hussin L.M.S. (2015). Preparation of nanostructured hydrated antimony oxide using a sol-gel process. Characterization and applications for sorption of La3+ and Sm3+ from aqueous solutions. Russian Journal of Applied Chemistry, 88(8): 1351-1360. https://doi.org/10.1134/S1070427215080200
  • Adelman, J.G.; Beauchemin, S.; Hendershot, W.H. & Kwong, Y.T.J. (2012). Change in the oxidation rate of stibnite as affected by pyrite in an oxygenated flow-through system. Geochemistry: Exploration, Environment, Analysis, 12: 227-239. https://doi.org/10.1144/1467-7873/11-RA-077
  • Ambe, S. (1987). Adsorption kinetics of antimony (V) ions onto α-Fe2O3 surfaces from an aqueous solution. Langmuir, 3(4): 489-493. https://doi.org/10.1021/la00076a009
  • Atencio D.; Andrade, M.B.; Christy, A.G.; Gieré, R. & Kartashow, P.M. (2010). The pyrochlore supergroup of minerals: nomenclature. Canadian Mineralogist, 48: 673-698. https://doi.org/10.3749/canmin.48.3.673
  • Báez, D.F.; Pardo H.; Laborda I.; Marco J.F.; Yáñez C. & Bollo S. (2017). Reduced graphene oxides: Influence of the reduction method on the electrocatalytic effect towards nucleic acid oxidation. Nanomaterials, 7 (7): 168. https://doi.org/10.3390/nano7070168 PMid:28677654 PMCid:PMC5535234
  • Bahfenne S. & Frost R.L. (2010). Raman spectroscopic study of the antimonate mineral lewisite (Ca, Fe, Na)2(Sb,Ti)2O6(O, OH)7. Radiation Effects and Defects in Solids, 165 (1): 46-53. https://doi.org/10.1080/10420150903418485
  • Bahfenne S. & Frost R.L. (2010). Vibrational Spectroscopic Study of the Antimonate Mineral Stibiconite. Spectroscopy Letters, 43 (6): 486-490. https://doi.org/10.1080/00387010903360313
  • Bahfenne S. & Frost R.L. (2010) Raman spectroscopic study of the antimonate mineral romeite. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 75 (2): 637-639. https://doi.org/10.1016/j.saa.2009.11.031 PMid:20034848
  • Beudant F.S. (1837). Traité élémentaire de Minéralogie, 2nd edition, Carilian Jeune, Paris.
  • Biagioni C.; Orlandi P.; Nestola F. & Bianchin S. (2013). Oxycalcioroméite, Ca2Sb2O6O, from Buca della Vena mine, Apuan Alps, Tuscany, Italy: a new member of the pyrochlore supergroup. Mineralogical Magazine, 77 (7): 3027-3037. https://doi.org/10.1180/minmag.2013.077.7.12
  • Birchall T.; Connor J.A. & Hillier I (1975). High-energy photoelectron spectroscopy of some antimony compounds. Journal of the Chemical Society, Dalton Transactions, 20: 2003-2006. https://doi.org/10.1039/dt9750002003
  • Bodenes L.; A. Darwiche, L. Monconduit & Martinez H. (2015).The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative x-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. Journal of Power Sources, 273: 14-24. https://doi.org/10.1016/j.jpowsour.2014.09.037
  • Botto, L.; Schalamuk, I.; Ametrano, S. & De Barrio, R. (1990). The vibrational spectrum of Cervantite (α-Sb2O4). Anales de la Asociación Química Argentina, 78 (4): 195-201.
  • Burke, E.A.J. (2006) A mass discreditation of GQN minerals. Canadian Mineralogist, 44: 1557-1560. https://doi.org/10.2113/gscanmin.44.6.1557
  • Cody C.A.; L. Dicarlo & Darlington R.K. (1979). Vibrational and Thermal Study of Antimony Oxides. Inorganic Chemistry, 18 (6): 1572-1576. https://doi.org/10.1021/ic50196a036
  • Corby Anderson G. (2019). SME Mineral Processing and Extractive Metallurgy Handbook. Society for Mining, Metallurgy and Exploration, USA, 2203 pp.
  • Damour A. (1841). Sur la roméite, nouvelle espèce minérale, de St. Marcel, Piemont. Annales des Mines, 20 (3): 247-254. https://rruff.info/uploads/Annales_des_mines_20_1841_247.pdf
  • Dana J.D. (1850). A system of mineralogy: Comprising the most recent discoveries, 3rd edition. George P. Putnam, New York, London, 711 pp.
  • Delobel R.; H. Baussart & Leroy J.M. (1983). X-ray photoelectron spectroscopy study of uranium and antimony mixed metal-oxide catalysts. Journal of the Chemical Society, Faraday Transactions, 79: 879-891. https://doi.org/10.1039/f19837900879
  • Gadsden J.A. (1975). Infrared spectra of minerals and related inorganic compounds. Buttherworth & CO, London, 277 pp.
  • Garbassi F. (1980). XPS and AES Study of Antimony Oxides. Surface and interface analysis, 5(2): 165-169. https://doi.org/10.1002/sia.740020502
  • Garcia-Guinea J.; Garrido F.; López-Arce P.; Correcher V. & Delafiguera J. (2017). Spectral green cathodoluminescence emission from surfaces of insulators with metal-hydroxyl bonds. Journal of Luminescence, 190: 128-135. https://doi.org/10.1016/j.jlumin.2017.05.039
  • Garcia-Guinea J.; Correcher V.; Can N.; Garrido F. & Townsend P.D. (2018). Cathodoluminescence spectra recorded from surfaces of solids with hydrous molecules. Journal of Electron Spectroscopy and Related Phenomena, 227: 1-8. https://doi.org/10.1016/j.elspec.2018.05.008
  • Gilliam S.J.; Jensen J.O.; Banerjee A.; Zeroka D.; Kirkby S.J. & Merrow C.N. (2004). A theoretical and experimental study of Sb4O6: vibrational analysis, infrared and Raman spectra. Spectrochimica Acta Part A: Molecular Spectroscopy, 60: 425-434 https://doi.org/10.1016/S1386-1425(03)00245-2 PMid:14670509
  • Gottlieb P.; Wilkie G.; Sutherland D.; Ho-Tun E.; Suthers S.; Perera K.; Jenkins B.; Spencer S.; Butcher A. & Rayner J. (2000). Using quantitative electron microscopy for process mineralogy applications. The Journal of the Minerals, Metals and Materials Society, 52: 24-25 https://doi.org/10.1007/s11837-000-0126-9
  • Gründer W.; Pätzold H. & Strunz H. (1962). Sb2O4 als Mineral (Cervantit). Neues Jahrbuch für Mineralogie / Monatshefte, 5: 93-98.
  • Gunasekaran S, G. Anbalagan, G. & Pandi S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of the Raman Spectroscopy, 37: 892-899 https://doi.org/10.1002/jrs.1518
  • Hussak E. & Prior G.T. (2018) Lewisite and zirkelite, two new Brazilian minerals. Mineralogical Magazine, 11: 80-88. https://doi.org/10.1180/minmag.1895.011.50.05
  • Izquierdo R.; Sacher E. & Yelon A. (1989). X-ray photoelectron spectra of antimony oxides. Applied Surface Science, 40: 175-177. https://doi.org/10.1016/0169-4332(89)90173-6
  • Kharbish S. & Jelen S. (2016). Raman spectroscopy of the Pb-Sb sulfosalts minerals: Boulangerite, jamesonite, robinsonite and zinkenite. Vibrational Spectroscopy, 85: 157-166. https://doi.org/10.1016/j.vibspec.2016.04.016
  • Li N.; Xia Y.; Mao Z.; Wang L.; Guan Y. & Zheng A. (2012) Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polymer Degradation and Stability, 97(9): 1737-1744. https://doi.org/10.1016/j.polymdegradstab.2012.06.011
  • López G.P.; Castuer D.G. & Ratner B. (1991). XPS O1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surface and Interface Analysis, 17: 267-272. https://doi.org/10.1002/sia.740170508
  • Makreski P.; G. Petrusevski, S. Ugarkovic & G. Jovanovski (2013) Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts. Vibrational Spectroscopy 68: 177-182. https://doi.org/10.1016/j.vibspec.2013.07.007
  • Marco J.F.; Gancedo J.R.; Ortiz J. & Gautier J.L. (2004). Characterization of the spinel-related oxides NixCO3−xO4 (x=0.3,1.3,1.8) prepared by spray pyrolysis at 350°C. Applied Surface Science, 227: 175-186. https://doi.org/10.1016/j.apsusc.2003.11.065
  • Meškinis S.; Vasiliauskas A.; Andrulevičius M.; Peckus D.; Tamulevičius S. & Viskontas K. (2020). Diamond like carbon films containing Si: Structure and nonlinear optical properties. Materials, 13 (4): 1-15. https://doi.org/10.3390/ma13041003 PMid:32102249 PMCid:PMC7079637
  • Martín, J.D. (2006). XPowder: Programa para análisis cualitativo y cuantitativo por difracción de rayos X. Macla, 4: 35-44.
  • Miller, P.J. & Cody C.A. (1982). Infrared and Raman investigation of vitreous antimony trioxide. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(5): 555-559 https://doi.org/10.1016/0584-8539(82)80146-3
  • Morgan W.E.; Stec, W.J. & Van Wazer J.R. (1973). Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorganic Chemistry, 12(4): 953-955. https://doi.org/10.1021/ic50122a054
  • Moulder J.F.; Stickle W.F.; Sobol P.E. & Bomben K.D. (1992) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie, USA, 261 pp.
  • Vitaliano C.J. & Mason B. (1952). Stibiconite and Cervantite. American Mineralogist, 37: 982-999. http://www.minsocam.org/ammin/AM37/AM37_982.pdf
  • Multani R.S.; Feldmann T. & Demopoulos G.P. (2016). Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options. Hydrometallurgy 164: 141-153. https://doi.org/10.1016/j.hydromet.2016.06.014
  • Orecchio S. (2013) Micro-analytical characterization of decorations in handmade ancient floor tiles using inductively coupled plasma optical emission spectrometry (ICP-OES). Microchemical Journal, 108: 137-150. https://doi.org/10.1016/j.microc.2012.10.011
  • Rouse R.C.; Dunn P.J.; Peacor Dr. & Wang L. (1998), Structural studies of the natural antimonian pyrochlores. I. Mixed valency, cation site splitting, and symmetry reduction in lewisite. Journal of Solid State Chemistry, 141: 562-569. https://doi.org/10.1006/jssc.1998.8019
  • Schaller W.T. (1916). Mineralogical notes. Schneebergite and Romeite. U.S. Geological Survey Bulletin, 610: 81-95 https://pubs.usgs.gov/bul/0610/report.pdf
  • Fleischer M (1962). New mineral names. American Mineralogist, 47(9-10): 1216-1223.
  • Siebert H. (1959). Infrared spectra of telluric acids, tellurates and antimonates. Zeitschrift für anorganische und Allgemeine Chemie, 301: 161-170. https://doi.org/10.1002/zaac.19593010305
  • Smirnov M.Y.; A.V. Kalinkin & V.I. Bukhtiyarov (2007). X-ray photoelectron spectroscopic study of the interaction of supported metal catalysts with NOx. Journal of Structural Chemistry, 48: 1053-1060 https://doi.org/10.1007/s10947-007-0170-1
  • Stevens J.G.; Etter R.M. & Setzer E.W. (1993). 121Sb Mössbauer spectroscopic study of the mineral stibiconite. Nuclear Instruments and Methods in Physics Research B, 76: 252-253. https://doi.org/10.1016/0168-583X(93)95199-F
  • Stevens-Kalceff M.A. & Phillips M.R. (1995). Cathodoluminescence micro-characterization of the defect structure of quartz. Physical Review B., 52: 3122-3134 https://doi.org/10.1103/PhysRevB.52.3122 PMid:9981428
  • Wagner C.D.; Naumkin A.V.; Kraut-Vass A.; Allison J.W.; Powell C.J. & Rumble J.R. Jr. (2003) NIST Standard Reference Database 20, Version 3.4, web version. http:/srdata.nist.gov/xps/
  • Wilson S.C.; P.V. Lockwood, P.M. Ashley &Tighe M. (2010). The chemistry and behavior of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution, 158 (5): 1169-1181, https://doi.org/10.1016/j.envpol.2009.10.045 PMid:19914753
  • Zubkova V.; D.Y. Pushcharowsky, D. Atencio, A.V. Arakcheeva & P.A. Matioli. (2000) The crystal structure of lewisite, (Ca,Sb3+,Fe3+,Al,Na,Mn)2(Sb5+,Ti)2O6(OH). Journal of Alloys and Compounds, 296: 75-79. https://doi.org/10.1016/S0925-8388(99)00513-7