Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders
- Segovia, F 1
- Górriz, J M 1
- Ramírez, J 1
- Martinez-Murcia, F J 1
- García-Pérez, M 1
- 1 Department of Signal Theory, Networking and Communications, University of Granada, Spain
Revista:
Logic Journal of the IGPL
ISSN: 1367-0751, 1368-9894
Año de publicación: 2018
Tipo: Artículo
Otras publicaciones en: Logic Journal of the IGPL
Información de financiación
Financiadores
-
Ministry of Economy and Competitiveness
- TEC2015-64718-R
- University of Granada
- Alzheimer’s Disease Neuroimaging Initiative
-
National Institutes of Health
- U01 AG024904
-
Department of Defense
- W81XWH-12-2-0012
- National Institute on Aging
- National Institute of Biomedical Imaging and Bioengineering
- Alzheimer's Drug Discovery Foundation
- BioClinica
- Bristol-Myers Squibb Company
- Eli Lilly and Company
- F. Hoffmann-La Roche
- Fujirebio
- GE Healthcare
- Janssen Research and Development
- Medpace
- Meso Scale Diagnostics
- Pfizer
- Novartis Pharmaceuticals
- Canadian Institutes of Health Research
- National Institutes of Health
- Northern California Institute for Research and Education
- University of California
Referencias bibliográficas
- Abadi, Software available from https://www.tensorflow.org/
- Duin, (2000), In 15th International Conference on Pattern Recognition, pp. 1
- Foster, (2007), Brain, 130, pp. 2616, 10.1093/brain/awm177
- Friston, (2006), Statistical Parametric Mapping: The Analysis of Functional Brain Images
- K. Friston and K.Stephan. Chapter 03 - Modelling brain responses. In Statistical Parametric Mapping, Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols and William Penny, eds, pp. 32–45. Academic Press, London, 2007.
- Gilman, (2008), Neurology, 71, pp. 670, 10.1212/01.wnl.0000324625.00404.15
- Górriz, (2017), IEEE Access, 5, pp. 11468, 10.1109/ACCESS.2017.2714579
- Gorriz, (2017), Expert Systems with Applications, 90, pp. 40, 10.1016/j.eswa.2017.08.006
- Hughes, (2002), Brain, 125, pp. 861, 10.1093/brain/awf080
- Illán, (2012), Medical Physics, 39, pp. 5971, 10.1118/1.4742055
- Koch, (2005), Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 46, pp. 1109
- la Fougère, (2010), Journal of Nuclear Medicine, 51, pp. 581, 10.2967/jnumed.109.071811
- Lee, (1999), Nature, 401, pp. 44565, 10.1038/44565
- Litvan, (1996), Neurology, 47, pp. 1, 10.1212/WNL.47.1.1
- Lopez, (2009), Electronics Letters, 45, pp. 389, 10.1049/el.2009.0176
- Martinez-Murcia, (2017), Natural and Artificial Computation for Biomedicine and Neuroscience, pp. 324, 10.1007/978-3-319-59740-9_32
- Murray, (2013), pp. 439
- Padilla, (2010), Neuroscience Letters, 479, pp. 192, 10.1016/j.neulet.2010.05.047
- Pastur-Romay, (2016), Deep artificial neural networks and neuromorphic chips for big data analysis
- Pedregosa, (2011), Journal of Machine Learning Research, pp. 2825
- Saxena, (1998), pp. 623
- F. Segovia , C.Bastin, E.Salmon, J. M.Górriz, J.Ramírez and C.Phillips. Combining PET images and neuropsychological test data for automatic diagnosis of Alzheimer's disease. In PLoS ONE, 9, e88687, 2014. doi:10.1371/journal.pone.0088687.
- Segovia, Proceeding of SPIE Medical Imaging 2017, pp. 101342B
- Segovia, (2017), Frontiers in Neuroinformatics, 10.3389/fninf.2017.00023
- Google’s latest machine learning system, open sourced for everyone
- Towey, (2011), Nuclear Medicine Communications, pp. 699
- Trambaiolli, (2011), Clinical EEG and Neuroscience, 42, pp. 160, 10.1177/155005941104200304
- Turk, (1991), Journal of Cognitive Neuroscience, 3, pp. 71, 10.1162/jocn.1991.3.1.71