Análisis didáctico en la formación de maestros basado en las herramientas del Enfoque ontosemiótico. El caso de lecciones de proporcionalidad
- Burgos Navarro, María 1
- Castillo, María José 2
- Godino, Juan D. 1
-
1
Universidad de Granada
info
-
2
Universidad de Costa Rica
info
ISSN: 0213-8646, 2530-3791
Year of publication: 2023
Volume: 37
Issue: 98
Pages: 11-34
Type: Article
More publications in: RIFOP : Revista interuniversitaria de formación del profesorado: continuación de la antigua Revista de Escuelas Normales
Abstract
A textbook lesson shows the instructional process planned by the author to promote the learning of content by potential students. Assessing the suitability of a lesson requires an in-depth analysis that considers the sequence of operative and discursive practices proposed by the author for developing the mathematical content, how the required prior knowledge is managed, and identifying potentially conflictive elements that the teacher must consider. This paper describes the results of a training experience with students for primary school teacher aimed at fostering the competence of didactical analysis, using a proportionality textbook lesson. The aim is for students to analyse teaching situations by characterising objects and processes as constituent elements of the mathematical content (onto-semiotic analysis) to be learned and to identify their role in possible learning difficulties (identification of semiotic conflicts). The design, implementation, and evaluation of the experience are based on the application of theoretical-methodological tools of the Onto-semiotic Approach. The content analysis of the reports produced by the students for teacher reveals their difficulties in identifying the objects (mainly propositions and arguments) that are required or emerge from the practices, through the respective mathematical processes. Accordingly, the identification of conflicts, especially those referring to specific epistemic and cognitive aspects of proportionality or their treatment is not sufficiently satisfactory.
Bibliographic References
- Ahl, L. (2016). Research findings’ impact on the representation of proportional reasoning in Swedish Mathematics textbooks. REDIMAT, 5(2), 180–204. https://doi.org/10.4471/redimat.2016.1987.
- Bel, J. y Colomer, J. (2018). Teoría y metodología de investigación sobre libros de texto: análisis didáctico de las actividades, las imágenes y los recursos digitales en la enseñanza de las Ciencias Sociales. Revista Brasileira de Educação, 23(353), e230082. http://dx.doi.org/10.1590/S1413-24782018230082
- Beyer, C. J. y Davis, E. A. (2012). Learning to critique and adapt science curriculum materials: Examining the development of preservice elementary teachers’ pedagogical content knowledge. Science Education, 96(1), 130–157. https://doi.org/10.1002/sce.20466
- Braga, G. y Belver, J. (2016). El análisis de libros de texto: una estrategia metodológica en la formación de los profesionales de la educación. Revista Complutense de Educación, 27(1), 199–218. http://dx.doi.org/10.5209/rev_RCED.2016.v27.n1.45688
- Breda, A., Pino-Fan, L. y Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflection and assessment on teaching practice. EURASIA Journal of Mathematics, Science and Technology Education, 13(6), 1893– 1918. https://doi.org/10.12973/eurasia.2017.01207a
- Burgos, M., Castillo, M., Beltrán-Pellicer, P., Giacomone, B. y Godino, J. D. (2020). Análisis didáctico de una lección sobre proporcionalidad en un libro de texto de primaria con herramientas del enfoque ontosemiótico. Bolema, 34(66), 40–69.
- Burgos, M. y Godino, J. D. (2021). Assessing the epistemic analysis competence of prospective primary school teachers on proportionality tasks. IJSME, 20, 367– 389. https://doi.org/10.1007/s10763-020-10143-0
- Cohen, L., Manion, L. y Morrison, K. (2011). Research methods in education. Routledge.
- Fan, L., Zhu, Y. y Miao, Z. (2013). Textbook research in mathematics education: development status and directions. ZDM, 45(5), 633–646.
- Fernández, C. y Llinares, S. (2012). Características del desarrollo del razonamiento proporcional en la Educación Primaria y Secundaria. Enseñanza de las Ciencias, 30(1), 129–142.
- Font, V., Planas, N. y Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática. Infancia y Aprendizaje, 33(1), 89–105.
- Gellert, U., Becerra, R. y Chapman, O. (2013). Research Methods in Mathematics Teacher Education. En K. Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick y F. K. S. Leung (Eds.), Third International Handbook of Mathematics Education, (vol. 27, pp. 327–360). Springer International. https://doi.org/10.1007/978-1-4614- 4684-2_11
- Giacomone B., Godino J. D., Wilhelmi M. R. y Blanco T. F. (2018). Desarrollo de la competencia de análisis ontosemiótico de futuros profesores de matemáticas. Revista Complutense de Educación, 29(4), 1109-1131. https://doi.org/10.5209/RCED.54880
- Godino, J. D., Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in education. ZDM The International Journal on Mathematics Education, 39(1-2), 127–135
- Godino, J. D., Giacomone, B., Batanero, C. y Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema, 31(57), 90–113.
- Godino, J. D., Rivas, H., Arteaga, P., Lasa, A. y Wilhelmi, M. (2014). Ingeniería didáctica basada en el enfoque ontológico-semiótico del conocimiento y la instrucción matemáticos. Recherches en Didactique des Mathématiques, 34(2/3), 167–200.
- González, Y., Garín, M., Nieto, M., Ramírez, R., Bernabeu, J., Pérez, M., Pérez, B., Morales, F., Vidal, J., Hidalgo, J. y Moratalla, V. (2015). Matemáticas. 6 Primaria. Savia, Ediciones SM.
- Karplus, R., Pulos, S. y Stage, E. (1983). Early adolescents proportional reasoning on “rate” problems. Educational Studies in Mathematics, 14(3), 219–233.
- Kim, O. K. (2007). Teacher knowledge and curriculum use. En T. de Silva Lamberg y L. R. Wiest (Eds.), Proceedings of the 29th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1114–1121). PME.
- Lamon, S. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning, (pp. 629–668). Information Age Publishing,
- Lin, P-J. (2018). The Development of Students Mathematical Argumentation in a Primary Classroom. Educação y Realidade, 43(3), 1171–1192.
- Nogueira, I. (2015). Análise ontossemiótia de procesos instruccionales de matemática, melhoria de práticas e desenvolvimento profissional docente. Revista de Estudios e investigación en Psicología y Educación, 6, 209-2143.
- Pino-Fan, L., Assis, A. y Castro, W. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1429–1456.
- Pochulu, M., Font, V. y Rodríguez, M. (2016). Desarrollo de la competencia en análisis didáctico de formadores de futuros profesores de matemática a través del diseño de tareas. Revista Latinoamericana de Investigación en Matemática EducativaRELIME, 19(1), 71–98.
- Seckel, M. J. y Font, V. (2020). Competencia reflexiva en formadores del profesorado de matemática. Magis, Revista Internacional de Investigación en Educación, 12(25), 127–144.
- Shield, M. y Dole, S. (2013). Assessing the potential of mathematics textbooks to promote deep learning. Educational Studies in Mathematics, 82(2),183–199.
- Wijaya, A., Van den Heuvel-Panhuizen, M. y Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89, 41–65.
- Yang, K-L., y Liu, X-Y. (2019). Exploratory study on Taiwanese secondary teachers’ critiques of mathematics textbooks. Eurasia Journal of Mathematics, Science and Technology Education, 15(1), em1655. https://doi.org/10.29333/ejmste/99515