The use of recycled aggregates in the construction sectora scientific bibliometric analysis

  1. Z. Sánchez-Roldán
  2. M. Zamorano
  3. M. Martín-Morales
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2022

Volumen: 72

Número: 345

Tipo: Artículo

DOI: 10.3989/MC.2022.07421 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

The environmental problems associated with the construction sector have promoted the worldwide scientific community to pay attention to the use of recycled aggregates from construction and demolition waste. SciMAT and VOSviewer bibliometric tools have been applied in order to analyse, quantify and visualise the conceptual and social aspects of this scientific field, as well as its evolution between 1973 and 2019. The study of 843 scientific papers in this field has shown that the most important thematic area has been Recycling. In general, the common objective of the published papers was to study the efficient use of resources contained in construction and demolition waste due to their treatment to produce recycled aggregates, particularly for use in concrete. Likewise, some lacks have been observed in other areas of the analysed field, e.g. the use recycled aggregates in applications subject to less demanding regulations (mortars, precast concrete products, or green roofs).

Referencias bibliográficas

  • UEPG. (2018) European aggregates association. A sustainable industry for a sustainable Europe. Annual Review 2017-2018. Union Eur des Prod Granulats Brussels-Belgium. 32.
  • Eurostat. (2018) Waste Statistics, gestión de residuos (env_wasgen) [Internet]. Eurostat. 2018. p. Date accesed: 20-11-2018. Retrieved from https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wasgen&lang=en.
  • Comisión Europea. (2014) COM 445. Comunicación de la comisión al parlamento europeo, el consejo, el comité económico y social europeo y el comité de las regiones. Oportunidades para un uso más eficiente de los recursos en el sector de la construcción. Bruselas. 1-29.
  • Comisión Europea. (2015) COM 614. Comunicación de la comisión al parlamento europeo, el consejo, el comité económico y social europeo y el comité de las regiones. Cerrar el círculo: Un plan de acción de la UE para la economía circular (COM 614). Bruselas. 24.
  • Ministerio de Fomento. (2008) EHE-08. Instrucción de Hormigón Estructual. BOE. 203, 35176-8.
  • Comisión Europea. (2014) COM 397. Propuesta de directiva del parlamento europeo y del consejo por la que se modifican las directivas 2008/98/CE sobre los residuos, 94/62/CE relativa a los envases y residuos de envases, 1999/31/CE relativa al vertido de residuos, 2000/53/CE relati. Bruselas. 35.
  • Parlamento Europeo. (2015) 2017/C 265/08. Resolución del Parlamento Europeo, de 9 de julio de 2015, sobre el uso eficiente de los recursos: avanzar hacia una economía circular (2014/2208(INI)). DOUE. C 295, 65-75.
  • Comisión Europea. (2017) COM 33. Informe de la comisión al parlamento europeo, al consejo, al comité económico y social europeo y al comité de las regiones sobre la aplicación del plan de acción para la economía circular. Bruselas. 1-15.
  • Chen, P.; Chen, X.; Wang, Y.; Wang, P. (2020) Preliminary study on the upcycle of non-structural construction and demolition waste for waste cleaning. Mater. Construcc. 70 [338], e220..
  • Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 68, 501-516.
  • Saini, P.; Ashish, K.D. (2015) A review on recycled concrete aggregates. SSRG Int J Civ Eng - EFES. 71-75.
  • Kazmi, S.M.S.; Munir, M.J.; Wu, Y-F.; Patnaikuni, I.; Zhou, Y.; Xing, F. (2019) Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study. Cem. Concr. Compos. 104, 103398.
  • González-Fonteboa, B.; Seara-Paz, S.; de Brito, J.; González-Taboada, I.; Martínez-Abella, F.; Vasco Silva, R. (2018) Recycled concrete with coarse recycled aggregate. An overview and analysis. Mater. Construcc. 68 [330], e151.
  • Rubio De Hita, P.; Pérez-Gálvez, F.; Morales-Conde, M.J.; Pedreño-Rojas, M.A. (2019) Characterisation of recycled ceramic mortars for use in prefabricated beam-filling pieces in structural floors. Mater. Construcc. 69 [334], e189.
  • Sánchez-Roldán, Z.; Martín-Morales, M.; Valverde-Espinosa, I.; Zamorano, M. (2020) Technical feasibility of using recycled aggregates to produce eco-friendly urban furniture. Constr. Build. Mater. 250, 118890.
  • Naganathan, S.; Silvadanan, S.; Chung, T.Y.; Nicolasselvam, M.F.; Thiruchelvam, S. (2014) Use of wastes in developing mortar - a review. in: green technologies and sustainable development in construction. trans tech publications. Adv. Mat. Res. 9352014, 146-150.
  • Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr. Build. Mater. 70, 71-79.
  • Ferreira, R.L.S.; Anjos, M.A.S.; Ledesma, E.F.; Pereira, J.E.S.; Nóbrega, A.K.C. (2020) Evaluation of the physical-mechanical properties of cement-lime based masonry mortars produced with mixed recycled aggregates. Mater. Construcc. 70 [337], e210.
  • Vieira, C.S.; Pereira, P.M. (2015) Use of recycled construction and demolition materials in geotechnical applications: A review. Resour. Conserv. Recycl. 103, 192-204.
  • Cardoso, R.; Silva, R.V.; Brito, J. de; Dhir, R.K. (2016) Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Manag. 49, 131-145.
  • Marín-Uribe, C.R.; Navarro-Gaete, R. (2021) Empirical relationships between compressive and flexural strength of concrete containing recycled asphalt material for pavement applications using different specimen configurations. Mater. Construcc. 71 [342], e249.
  • Chen, H.; Yang, Y.; Yang, Y.; Jiang, W.; Zhou, J. (2014) A bibliometric investigation of life cycle assessment research in the web of science databases. Int. J. Life Cycle Assess. 19 [10], 1674-1685.
  • Rodríguez-Bolívar, M.P.; Alcaide-Muñoz, L.; Cobo, M.J. (2018) Analyzing the scientific evolution and impact of e-Participation research in JCR journals using science mapping. Int. J. Inf. Manage. 40, 111-119.
  • Callon, M.; Courtial, J.-P.; Laville, F. (1991) Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics. 22, 155-205. Retrieved from https://www.academia.edu/28341042/Co_word_analysis_as_a_tool_for_describing_the_network_of_interactions_between_basic_and_technological_research_The_case_of_polymer_chemsitry.
  • Noyons, E.C.M.; Moed, H.F.; Luwel, M. (1999) Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. J. Am. Soc. Inf. Sci. 50 [2], 115-131.
  • Morris, S.A.; Van der Veer Martens, B. (2009) Mapping research specialties. Annu Rev Inf Sci Technol. 42 [1], 213-295.
  • Cobo Martín, M.J.; Martínez, M.A.; Gutiérrez-Salcedo, M.; Fujita, H.; Herrera-Viedma, E. (2015) 25 years at knowledge-based systems: a bibliometric analysis. Knowledge-Based Syst. 80, 3-13.
  • Cobo Martín, M.J.; López-Herrera, E.; Herrera-Viedma, E.; Herrara, F. (2011) Science mapping software tools: review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 62 [7], 1382-1402.
  • Cobo Martín, M.J.; Lõpez-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. (2012) SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 63 [8], 1609-1630.
  • Persson, O.; Danell, R.; Schneider, J. (2009) How to use Bibexcel for various types of bibliometric analysis. Celebr. Sch. Commun. Stud. A Festschrift Olle Persson His 60th Birthd. 5, 9-24.
  • Chen, C. (2006) CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57 [3], 359-377.
  • Wise, J.A. (1999) The Ecological Approach to Visualization. J. Am. Soc. Inf. Sci. 50, 1224-1233. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8319&rep=rep1&type=pdf.
  • Sci2 Team. (2009) Sci2 A tool for science of science research & practice. Retrieved from http://sci2.cns.iu.edu.
  • Cobo-Martín, M.J. (2011) SciMAT: Herramienta software para el análisis de la evolución del conocimiento científico. propuesta de una metodología de evaluación. Universidad de Granada. 2011. Retrieved from http://hdl.handle.net/10481/20201.
  • van Eck, N.J.; Waltman, L. (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84 [2], 523-538.
  • Martí-Vargas, J.R.; García-Taengua, E.; Hale, W.M.; ElBatanouny, M.K.; Ziehl, P.H. (2015) Bibliometric analysis of Web of Science-indexed papers on concrete segmental bridges. PCI J. 60 [1], 118-133. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938089242&partnerID=40&md5=28e8d93003a2238ab212d9806a2e24ea.
  • Mymoon, M.; Mahendran, S.; Lakshmi-Poorna, R.; Suryakala, S. (2016) Directions in self consolidating concrete research : A bibliometric study. J Struct Eng. 43 [4], 329-340. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016088593&partnerID=40&md5=e631247174590589df97657ce1839ed5.
  • Liang, H.; Zhang, S.; Su, Y. (2020) The structure and emerging trends of construction safety management research: a bibliometric review. Int. J. Occup. Saf. Ergon. 26 [3], 1-20.
  • Geng, S.; Wang, Y.; Zuo, J.; Zhou, Z.; Du, H.; Mao, G. (2017) Building life cycle assessment research: A review by bibliometric analysis. Renew. Sustain. Energy Rev. 76, 176-184.
  • Nwodo, M.N.; Anumba, C.J. (2019) A review of life cycle assessment of buildings using a systematic approach. Build. Environ. 162, 106290.
  • Rojas-Sola, J.I.; de San-Antonio-Gómez, C. (2010) Análisis bibliométrico de las publicaciones científicas españolas en la categoría construction & building technology de la base de datos web of science (1997-2008). Mater. Construcc. 60 [300], 143-149.
  • Cañas-Guerrero, I.; Mazarrón, F.R.; Calleja-Perucho, C.; Pou-Merina, A. (2014) Bibliometric analysis in the international context of the “Construction & Building Technology” category from the Web of Science database. Constr. Build. Mater. 53, 13-25.
  • Sorli-Rojo, A.; Mochón-Bezares, G. (2013) ‘Materiales de Construcción’ Journal, 2003-2012: a bibliometric analysis. Mater. Construcc. 63 [312], 613-621.
  • Blank, L.; Vasl, A.; Levy, S.; Grant, G.; Kadas, G.; Dafni, A.; et al. (2013) Directions in green roof research: A bibliometric study. Build Environ. 66, 23-28.
  • Farzaneh, A.; Monfet, D.; Forgues, D. (2019) Review of using Building Information Modeling for building energy modeling during the design process. J. Build. Eng. 23, 127-135.
  • Matarneh, S.T.; Danso-Amoako, M.; Al-Bizri, S.; Gaterell, M.; Matarneh, R. (2019) Building information modeling for facilities management: A literature review and future research directions. J. Build. Eng. 24, 100755.
  • Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. (2021) Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 44, 102705.
  • Mhatre, P.; Panchal, R.; Singh, A.; Bibyan, S. (2021) A systematic literature review on the circular economy initiatives in the European Union. Sustain. Prod. Consum. 26, 187-202.
  • Jin, R.; Yuan, H.; Chen, Q. (2019) Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resour. Conserv. Recycl. 140, 175-188.
  • Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. (2019) Construction and demolition waste research: a bibliometric analysis. Archit. Sci. Rev. 62 [4], 354-365.
  • Liu, Y.; Sun, T.; Yang, L. (2017) Evaluating the performance and intellectual structure of construction and demolition waste research during 2000-2016. Environ. Sci. Pollut. Res. 24 [23], 19259-19266.
  • Ji, L.; Liu, C.; Huang, L.; Huang, G. (2018) The evolution of resources conservation and recycling over the past 30 years: a bibliometric overview. Resour. Conserv. Recycl. 134, 34-43.
  • Wong, S.; Mah, A.X.Y.; Nordin, A.H.; Nyakuma, B.B.; Ngadi, N.; Mat, R.; et al. (2020) Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environ. Sci. Pollut. Res. 27 [8], 7757-7784.
  • Det Amornrut, U.; Hallinger, P. (2020) A bibliometric review of research on sustainable construction, 1994-2018. J. Clean. Prod. 254, 120073.
  • Gutiérrez-Salcedo, M.; Martínez, M.A.; Moral-Munoz, J.A.; Herrera-Viedma, E.; Cobo Martín, M.J. (2018) Some bibliometric procedures for analyzing and evaluating research fields. Appl. Intell. 48 [5], 1275-1287.
  • Castillo-Vergara, M.; Alvarez-Marin, A.; Placencio-Hidalgo, D. (2018) A bibliometric analysis of creativity in the field of business economics. J. Bus. Res. 85, 1-9.
  • Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. (2018) Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 87, 235-247.
  • Kazmi, S.M.S.; Munir, M.J.; Wu, Y.F.; Patnaikuni, I.; Zhou, Y.; Xing, F. (2019) Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete. Cem. Concr. Compos. 97, 341-356.
  • Fernández-González, J.M.; Díaz-López, C.; Martín-Pascual, J.; Zamorano, M. (2020) Recycling organic fraction of municipal solid waste: Systematic literature review and bibliometric analysis of research trends. Sustain. 12 [11], 4798.
  • Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol. 62 [10], e1-34.
  • Mongeon, P.; Paul-Hus, A. (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 106 [1], 213-228.
  • Bordons, M.; Zulueta, M.A. (1999) Evaluación de la actividad científica a través de indicadores bibliométricos. Rev. Española Cardiol. 52 [10], 790-800. Retrieved from https://www.revespcardiol.org/es-evaluacion-actividad-cientifica-traves-indicadores-articulo-X0300893299001904.
  • Torres-salinas, D. (2007) Diseño de un sistema de información y evaluación científica. Análisis ciencimétrico de la actividad investigadora de la Universidad de Navarra en el área de ciencias de la salud. 1999-2005. Tesis Doctoral. 396. Retrieved from http://eprints.rclis.org/10545/1/Tesis_Daniel_Torres.pdf.
  • Hirsch, J.E. (2005) An index to quantify an individual´s scientific research output. Proc Natl. Acad. Sci. 102 [46], 16569-16572.
  • Martínez Sánchez, M.A.; Herrera Díaz, M.; Lima Fernández, A.I.; Herrera Gómez, M.; Herrera-Viedma, E. (2014) Un análisis bibliométrico de la producción académica española en la categoría de Trabajo Social del “Journal Citation Report”. Cuader. Trab. Soc. 27 [2], 429-438.
  • Eggue, L. (2006) Theory and practise of the g-index. Scientometrics. 69, [1] 131-152. Retireved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.9064&rep=rep1&type=pdf.
  • Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E.; Herrera, F. (2010) hg-index: A new index to characterize the scientific output of researchers based on the h- and g-indices. Scientometrics. 82 [2], 391-400.
  • Cabrerizo, F.J.; Alonso, S.; Herrera-Viedma, E.; Herrera, F. (2010) q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core. J. Informetr. 4 [1], 23-28. Retrieved from http://hdl.handle.net/10481/5679.
  • Cobo Martín, M.J.; Herrera, F. (2013) SciMAT User guide. 1-17. Retrieved from http://sci2s.ugr.es/scimat.
  • Thomé, A.M.T.; Ceryno, P.S.; Scavarda, A.; Remmen, A. (2016) Sustainable infrastructure: A review and a research agenda. J. Environ. Manage. 184 [Pt 2], 143-156.
  • Rip, A.; Courtial, J.P. (1984) Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics. 6 [6], 381-400.
  • Buck, A.D. (1973) Recycle concrete. Highw Res Rec. [430], 1-8. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015560896&partnerID=40&md5=1dad6016cb43cf976ff6a5af3574da05.
  • Comisión Europea. (2016) Protocolo de gestión de residuos de construcción y demolición en la UE. Com Eur y ECORYS Ref Ares (2016) 6914779 - 12/12/2016. [septiembre] 61.
  • Oliveira Neto, R.; Gastineau, P.; Cazacliu, B.G.; Le Guen, L.; Paranhos, R.S.; Petter, C.O. (2017) An economic analysis of the processing technologies in CDW recycling platforms. Waste Manag. 60, 277-289.
  • Parlamento Europeo; Consejo de la Unión Europea. (2018) Directiva (UE) 2018/851 del Parlamento europeo y del Consejo de 30 de mayo de 2018 por la que se modifica la Directiva 2008/98/CE sobre los residuos. DOUE. L 150, [14 de junio] 109-140.
  • Evangelista, L.; De Brito, J. (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 29 [5], 397-401.
  • Gomes, M.; de Brito, J. (2009) Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance. Mater. Struct. 42 [5], 663-675.
  • Evangelista, L.; de Brito, J. (2010) Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 32 [1], 9-14.
  • de Brito, J.; Pereira, A.S.; Correia, J.R. (2005) Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem. Concr. Compos. 27 [4], 429-433.
  • López-Uceda, A.; Ayuso, J.; Jiménez, J.R.; Agrela, F.; Barbudo, A.; De Brito, J. (2016) Upscaling the use of mixed recycled aggregates in non-structural low cement concrete. Materials. 9 [2], 91.
  • Carro-López, D.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I.; de Brito, J.; Varela-Puga, F. (2017) Proportioning, microstructure and fresh properties of self-compacting concrete with recycled sand. Procedia Eng. 171, 645-657.
  • Esquinas, A.R.; Álvarez, J.I.; Jiménez, J.R.; Fernández, J.M.; de Brito, J. (2018) Durability of self-compacting concrete made with recovery filler from hot-mix asphalt plants. Constr. Build. Mater. 161, 407-419.
  • Barroqueiro, T.; da Silva, P.R.; de Brito, J. (2019) Fresh-state and mechanical properties of high-performance self-compacting concrete with recycled aggregates from the precast industry. Materials. 12 [21], 3565.
  • Pedro, D.; de Brito, J.; Evangelista, L. (2018) Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume. Cem. Concr. Compos. 93, 63-74.
  • Silva, J.; de Brito, J.; Veiga, R. (2009) Incorporation of fine ceramics in mortars. Constr. Build. Mater. 23 [1], 556-564.
  • Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; de Brito, J. (2013) Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679-690.
  • Silva, J.; de Brito, J.; Veiga, R. (2010) Recycled red-clay ceramic construction and demolition waste for mortars production. J. Mater. Civ. Eng. 22 [3], 236-244.
  • Pereira, P.M.; Evangelista, L.; de Brito, J. (2012) The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. Constr. Build. Mater. 28 [1], 722-729.
  • Barbudo, M.A.; de Brito, J.; Evangelista, L.; Bravo, M.; Agrela, F. (2013) Influence of water-reducing admixtures on the mechanical performance of recycled concrete. J. Clean. Prod. 59, 93-98.
  • Cartuxo, F.; de Brito, J.; Evangelista, L.; Jiménez, J.R.; Ledesma, E.F. (2015) Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizer. Constr. Build. Mater. 89, 36-47.
  • Kurda, R.; de Brito, J.; Silvestre, J.D. (2017) Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cem. Concr. Compos. 84, 198-213.
  • Kurda, R.; de Brito, J.; Silvestre, J.D. (2018) Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios. Mag. Concr. Res. 70 [4], 204-16.
  • Kurda, R.; de Brito, J.; Silvestre, J.D. (2019) Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Concr. Compos. 95, 169-182.
  • Evangelista, L.; de Brito, J. (2004) Criteria for the use of fine recycled concrete aggregates in concrete production. Int. RILEM Conf. Use Recycl. Mater. Build. Struct. [November] 503-510.
  • Evangelista, L.; Guedes, M.; de Brito, J.; Ferro, A.C.; Pereira, M.F. (2015) Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste. Constr. Build. Mater. 86, 178-188.
  • Neno, C.; de Brito, J.; Veiga, R. (2014) Using fine recycled concrete aggregate for mortar production. Mater. Res. 17 [1], 168-77.
  • Li, W.; Xiao, J.; Shi, C.; Poon, C.S. (2015) Structural behaviour of composite members with recycled aggregate concrete - An overview. Adv. Struct. Eng. 18 [6], 919-938.
  • Zhang, J.; Shi, C.; Li, Y.; Pan, X.; Poon, C-S.; Xie, Z. (2015) Influence of carbonated recycled concrete aggregate on properties of cement mortar. Constr. Build. Mater. 98 [Supplement C], 1-7.
  • Kou, S-C.; Poon, C-S. (2009) Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cem. Concr. Compos. 31 [9], 622-627.
  • González-Corominas, A.; Etxeberria, M.; Poon, C-S. (2017) Influence of the quality of recycled aggregates on the mechanical and durability properties of high performance concrete. Waste Biomass Valor. 8 [5], 1421-1432.
  • Lu, J.X.; Yan, X.; He, P.; Poon, C.S. (2019) Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. J. Clean. Prod. 234, 1102-12.
  • Poon, C.S.; Kou, S.C.; Lam, L. (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr. Build. Mater. 16 [5], 281-9.
  • Poon, C.S.; Chan, D. (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 20 [8], 569-577.
  • Poon, C-S.; Chan, D. (2007) Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. Constr. Build. Mater. 21 [1], 164-75.
  • Poon, C-S.; Lam, C.S. (2008) The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cem. Concr. Compos. 30 [4], 283-289.
  • Poon, C-S.; Kou, S-C.; Wan, H. wen; Etxeberria, M. (2009) Properties of concrete blocks prepared with low grade recycled aggregates. Waste Manag. 29 [8], 2369-77.
  • Kou, S-C.; Poon, C-S.; Chan, D. (2004) Properties of steam cured recycled aggregate fly ash concrete. Int. RILEM Conf. use Recycl. Mater. Build. Struct. Barcelona. [1], 590-9.
  • Poon, C.S.; Shui, Z.; Lam, L.; Fok, H.; Kou, S.C. (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 34 [1], 31-6.
  • Zhan, B.J.; Xuan, D.X.; Zeng, W.; Poon, C.S. (2019) Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete. Cem. Concr. Compos. 104, 103360.
  • Hossain, U.; Poon, C-S.; Lo, I.M.C.; Cheng, J.C.P. (2016) Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resour. Conserv. Recycl. 109, 67-77.
  • Fonseca, N.; de Brito, J.; Evangelista, L. (2011) The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cem. Concr. Compos. 33 [6], 637-643.
  • Silva, R.V.; de Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 65, 201-217.
  • Silva, R.V.; de Brito, J.; Dhir, R.K. (2016) Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. J. Clean. Prod. 112 [4], 2171-2186.
  • Barroqueiro, T.; da Silva, P.R.; de Brito, J. (2019) Fresh-state and mechanical properties of high-performance self-compacting concrete with recycled aggregates from the precast industry. Materials. 12 [21], 3565.
  • Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; de Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: ceramic masonry waste. J. Clean. Prod. 87, 692-706.
  • Poon, C-S.; Kou, S-C.; Lam, L. (2007) Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struc. 40 [9], 981-988.
  • Xiao, Z.; Ling, T-C.; Kou, S-C.; Wang, Q.Y.; Poon, C-S. (2011) Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks. Waste Manag. 31 [8], 1859-1866.
  • Kou, S-C.; Poon, C-S.; Etxeberria, M. (2014) Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cem. Concr. Compos. 53, 73-82.
  • Barbudo, M.A.; Agrela, F.; Ayuso, J.; Jiménez, J.R.; Poon, C-S. (2012) Statistical analysis of recycled aggregates derived from different sources for sub-base applications. Constr. Build. Mater. 28 [1], 129-38.
  • Sánchez de Juan, M.; Gutiérrez Alaejos, P. (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 23, [2] 872-7.
  • Poon, C-S.; Shui, Z.; Lam, L. (2004) Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 18, [6] 461-468.
  • Xiao, J.; Li, J.; Zhang, C. (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 35 [6], 1187-1194.
  • Etxeberria, M.; Vázquez-Ramonich, E.; Marí, A.R.; Barra de Oliveira, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 37 [5], 735-742.
  • Katz, A. (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33 [5], 703-711.
  • Hansen, T.C. (1986) Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-198. Mater. Struct. 19 [111], 201-46.
  • Buck, A.D. (1977) Recycled concrete as a source of aggregate. J. Am. Concr. Inst. 74, [5] 212-219.
  • Barra de Oliveira, M.; Vázquez-Ramonich, E. (1996) The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete. Waste Manag. 16 [1-3], 113-117.
  • Hansen, T.C.; Narud, H. (1983) Strength of recycled concrete made from crushed concrete coarse aggregate. Concr. Int. 5 [01], 79-83. Retrieved form https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=9140.
  • Parlamento Europeo; Consejo de la Unión Europea. (2008) Directiva 2008/98/CE del Parlamento Europeo y del Consejo de 19 de noviembre de 2008 sobre los residuos y por la que se derogan determinadas Directivas. DOUE. L 312 [22 de noviembre], 28.
  • Ministerio de la Presidencia. (2008) Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición. BOE. 38, [13 de febrero] 11. Retrieved form http://www.boe.es/boe/dias/2008/02/13/pdfs/A07724-07730.pdf.
  • Jefatura del Estado. (2011) Ley 22/2011, de 28 de julio, de residuos y suelos contaminados. BOE. 181 [29 de julio], 56. Retrieved form http://www.minetur.gob.es/.
  • Solís-Guzmán, J.; Marrero, M.; Montes-Delgado, M.V.; Ramírez-de-Arellano, A. (2009) A Spanish model for quantification and management of construction waste. Waste Manag. 29 [9], 2542-2548.
  • Corinaldesi, V.; Moriconi, G. (2009) Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr. Build. Mater. 23 [8], 2869-2876.
  • Comisión Europea. (2013) Decisión No 1386/2013/UE del parlamento europeo y del consejo de 20 de noviembre de 2013 relativa al Programa general de acción de la Unión en materia de medio ambiente hasta 2020 “Vivir bien, respetando los límites de nuestro planeta” (VII PMA). DOUE. [28 diciembre], 30.
  • Comisión Europea. (2012) COM 433. Comunicación de la comisión al parlamento europeo y al consejo. Estrategia para una competitividad sostenible del sector de la construcción y de sus empresas. Bruselas. [31 de julio], 1-16.
  • Martín-Morales, M.; Zamorano, M.; Valverde-Palacios, I.; Cuenca-Moyano, G.M.; Sánchez-Roldán, Z. (2013) Quality control of recycled aggregates (RAs) from construction and demolition waste (CDW). In: Handbook of Recycled Concrete and Demolition Waste Woodhead Publishing Limited. 2013. 270-303.
  • Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. (2018) A review of recycled aggregate in concrete applications (2000-2017) Constr. Build. Mater. 172, 272-292.
  • Marinković, S.B.; Radonjanin, V.; Malešev, M.; Ignjatović, I.S. (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 30 [11], 2255-2264.
  • Pedro, D.; de Brito, J.; Evangelista, L. (2015) Performance of concrete made with aggregates recycled from precasting industry waste: influence of the crushing process. Mater Struct. 48, 3965-3978.
  • Topcu, I.B.; Güncan, N.F. (1995) Using waste concrete as aggregate. Cem. Concr. Res. 25 [7], 1385-1390.
  • Bairagi, N.K.; Vidyadhara, H.S.; Ravande, K. (1990) Mix design procedure for recycled aggregate concrete. Constr. Build. Mater. 4 [4], 188-193.
  • Bairagi, N.K.; Ravande, K.; Pareek, V.K. (1993) Behaviour of concrete with different proportions of natural and recycled aggregates. Resour. Conserv. Recycl. 9 [1-2], 109-126.