Circulation weather types as a key factor on runoff initiation and sediment detachment in Mediterranean shrublands

  1. Rodrigo-Comino, Jesús 1
  2. Senciales-González, José María 2
  3. Pérez Albarracín, Ana 3
  4. Bandala, Erick R. 4
  5. Escrivá Saneugenio, Francisco 5
  6. Keesstra, Saskia D. 6
  7. Cerdà, Artemi
  1. 1 Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, España
  2. 2 Department of Geography, Málaga University, Campus of Teatinos s/n, 29071 Málaga, Spain.
  3. 3 Soil Erosion and Degradation Research Group. Department of Geography, Valencia University, Blasco Ibàñez, 28, 46010 Valencia, Spain
  4. 4 Division of Hydrologic Sciences, Desert Research Institute. 755 E. Flamingo Road, Las Vegas, Nevada, 89119, USA
  5. 5 3Soil Erosion and Degradation Research Group. Department of Geography, Valencia University
  6. 6 Team Soil, Water and Land Use, Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Rodrigo Comino, Jesús (ed. lit.)
  2. Muñoz Gómez, Casandra (ed. lit.)
  3. Rahdari, Mohammad Reza (ed. lit.)
  4. Salvati, Luca (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2023

Título del ejemplar: Land Degradation Risks: Key Topics to be faced over the world

Volumen: 49

Número: 2

Páginas: 29-49

Tipo: Artículo

DOI: 10.18172/CIG.5506 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

En esta investigación, los tipos de tiempo (CWT, por sus siglas en inglés) asociados con datos de presión de superficie individuales a diferentes alturas atmosféricas se utilizaron para correlacionar y cuantificar los eventos de erosión del suelo que corresponden a la pérdida de suelo (g m-2), la escorrentía (l m-2) y la concentración de sedimentos (g L-1) utilizando parcelas de erosión y colectores. Se utilizó como estudio de caso una zona de matorral mediterráneo representativo, ubicado en la Sierra de Enguera (este de España), donde se registraron 213 eventos de precipitación y eventos relacionados de pérdida de suelo durante el período 2010-2014. Se registró una precipitación media anual promedio de 544 mm, sumando un total de 2.720,1 mm para los cinco años de investigación. El 34,4% de los eventos de precipitación registrados varió de 10 a 29,9 mm, el 23,5% de 30 a 49,9 mm y el 15,9% de 50 a 99,9 mm. Se encontró que la baja presión dinámica con frentes (DLp+f) generó la mayor cantidad de precipitación alcanzando el 60,6% de la precipitación total (105 de los 213 eventos). Más de un tercio (35%) de los eventos de precipitación ocurrieron durante el CWT del Este, lo que representó el 48% de la precipitación total con valores promedio de 17,6 mm por evento. Del total de la escorrentía, el 65,6% estuvo relacionado con el CWT combinado de gotas frías y tiempos del este (CD). Se encontró que el DLp+f producía el 48,9% de la movilización de sedimentos, de los cuales el 73,5% de esta cantidad fue generada por el CWT del Este. El evento de mayor concentración de sedimentos se encontró para el tipo de tiempo del Sur con baja presión térmica (TLp) alcanzando 51,65 g L-1, seguido por A (anticiclones) del Este (42,23 g L-1). En su conjunto, el sur es el CWT que genera la mayor concentración promedio de sedimentos (28,66 g L-1), seguido del Este. Nuestros hallazgos sugieren que los CWT contribuyen a prever los períodos con mayores pérdidas de suelo y pueden ayudar a prevenirlos. Discutimos la necesidad de analizar los cambios en las tasas de erosión del suelo debido a cada tipo de tiempo para caracterizar mejor el proceso de erosión del suelo y evaluar las tasas de erosión del suelo, mejorar los modelos actuales e investigar cómo el cambio climático está cambiando el papel que juega los CWT en el inicio de la escorrentía y en la entrega de sedimentos.

Referencias bibliográficas

  • Al-Dousari, A.M., Alsaleh, A., Ahmed, M., Misak, R., Al-Dousari, N., Al-Shatti, F., Elrawi, M., William, T., 2019. Off-Road Vehicle Tracks and Grazing Points in Relation to Soil Compaction and Land Degradation. Earth Systems and Environment 3, 471-482. https://doi.org/10.1007/s41748-019-00115-y
  • Alpert, P., Osetinsky, I., Ziv, B., Shafir, H., 2004. Semi-objective classification for daily synoptic systems: application to the eastern Mediterranean climate change. International Journal of Climatology 24, 1001- 1011. https://doi.org/10.1002/joc.1036
  • Al-Shammary, A.A.G., Kouzani, A.Z., Kaynak, A., Khoo, S.Y., Norton, M., Gates, W., 2018. Soil Bulk Density Estimation Methods: A Review. Pedosphere 28, 581-596. https://doi.org/10.1016/S1002-0160(18)60034-7
  • Altinbilek, D., 2004. Development and management of the Euphrates–Tigris basin. null 20, 15-33. https://doi.org/10.1080/07900620310001635584
  • An, H., Tang, Z., Keesstra, S., Shangguan, Z., 2019. Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Scientific Reports 9. https://doi.org/10.1038/s41598-019-45927-0
  • Angillieri, M.Y.E., Perucca, L., Vargas, N., 2017. Catastrophic flash flood triggered by an extreme rainfall event in El Rodeo village, January 2014. Northwestern Pampean Ranges of Argentina. Geografiska Annaler: Series A, Physical Geography 99, 72-84. https://doi.org/10.1080/04353676.2016.1263022
  • Ares, M.G., Varni, M., Chagas, C., 2020. Runoff response of a small agricultural basin in the Argentine Pampas considering connectivity aspects. Hydrological Processes 34, 3102-3119. https://doi.org/10.1002/hyp.13782
  • Ashby, J.A., 1985. The social ecology of soil erosion in a Colombian farming system. Rural sociology (USA).
  • Auzet, A.V., Poesen, J., Valentin, C., 2002. Soil patterns as a key controlling factor of soil erosion by water. Catena 46, 85-87.
  • Baiamonte, G., Minacapilli, M., Novara, A., Gristina, L., 2019. Time Scale Effects and Interactions of Rainfall Erosivity and Cover Management Factors on Vineyard Soil Loss Erosion in the Semi-Arid Area of Southern Sicily. Water 11, 978. https://doi.org/10.3390/w11050978
  • Bayu, E.K., 2020. Determinant Variables for Women’s Participation in Soil and Water Conservation Practices in North Western Ethiopia: The Case of Shebel Berenta District (Woreda), East Gojjam Zone, Amhara National Regional State. Air, Soil and Water Research 13. https://doi.org/10.1177/1178622120942199
  • Benhamrouche, A., Martín Vide, J., 2011. Distribución espacial de la concentración diaria de la precipitación en la provincia de Alicante. Spatial distribution of daily rainfall in the Region of Alicante. https://doi.org/10.14198/INGEO2011.56.06
  • Bork, H.-R., Beckedahl, H.R., Dahlke, C., Geldmacher, K., Mieth, A., Li, Y., 2003. The world-wide explosion of soil erosion rates in the 20th century: The global soil erosion drama Are we losing our food production base? Petermanns Geographische Mitteilungen 147, 16-29.
  • Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). PNAS 117, 21994-22001. https://doi.org/10.1073/pnas.2001403117
  • Brazel, A.J., Nickling, W.G., 1986. The relationship of weather types to dust storm generation in Arizona (1965- 1980). Journal of Climatology 6, 255-275. https://doi.org/10.1002/joc.3370060303
  • Brown, L.R., 1981. World population growth, soil erosion, and food security. Science 214, 995-1002. https://doi.org/10.1126/science.7302578
  • Camarasa Belmonte, A.M., Segura Beltrán, F., 2001. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena 45, 229-249. https://doi.org/10.1016/S0341-8162(01)00146-1
  • Camarasa-Belmonte, A.M., 2016. Flash floods in Mediterranean ephemeral streams in Valencia Region (Spain). Journal of Hydrology, Flash floods, hydro-geomorphic response and risk management 541, 99-115. https://doi.org/10.1016/j.jhydrol.2016.03.019
  • Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M.A., Martinod, J., Guyot, J.L., Hérail, G., Riquelme, R., 2018. Review of erosion dynamics along the major N-S climatic gradient in Chile and perspectives. Geomorphology 300, 45-68. https://doi.org/10.1016/j.geomorph.2017.10.016
  • Cerdà, A., Daliakopoulos, I.N., Terol, E., Novara, A., Fatahi, Y., Moradi, E., Salvati, L., Pulido, M., 2021a. Longterm monitoring of soil bulk density and erosion rates in two Prunus Persica (L) plantations under flood irrigation and glyphosate herbicide treatment in La Ribera district, Spain. Journal of Environmental Management 282, 111965. https://doi.org/10.1016/j.jenvman.2021.111965
  • Cerdà, A., Terol, E., Daliakopoulos, I.N., 2021b. Weed cover controls soil and water losses in rainfed olive groves in Sierra de Enguera, eastern Iberian Peninsula. Journal of Environmental Management 290, 112516. https://doi.org/10.1016/j.jenvman.2021.112516
  • Chen, J., Xiao, H., Li, Z., Liu, C., Wang, D., Wang, L., Tang, C., 2019. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecological Engineering 132, 109-114. https://doi.org/10.1016/j.ecoleng.2019.04.010
  • Clar, A.J., 2017. Gota fría y depresión atmosférica: claves de la lluvia fuerte mediterránea. Mètode: Revista de difusión de la Investigación 16-23.
  • Collins, D.B.G., 2004. Modelling the effects of vegetation-erosion coupling on landscape evolution. Journal of Geophysical Research 109. https://doi.org/10.1029/2003JF000028
  • Cortesi, N., Gonzalezâ-Hidalgo, J.C., Trigo, R.M., Ramos, A.M., 2014. Weather types and spatial variability of precipitation in the Iberian Peninsula. International Journal of Climatology 34, 2661-2677. https://doi.org/10.1002/joc.3866
  • de Lima, J.L.M.P., Singh, V.P., de Lima, M.I.P., 2003. The influence of storm movement on water erosion: storm direction and velocity effects. Catena 52, 39-56. https://doi.org/10.1016/S0341-8162(02)00149-2
  • Deshpande, V.V., Telang, M.S., 1950. Pipet Method of Sedimentation Analysis. Rapid Determination of Distribution of particle size. Anal. Chem. 22, 840-841. https://doi.org/10.1021/ac60042a033
  • Di, X., Xiao, B., Dong, H., Wang, S., 2019. Implication of different humic acid fractions in soils under karst rocky desertification. Catena 174, 308-315. https://doi.org/10.1016/j.catena.2018.11.028
  • Dong, C., MacDonald, G., Okin, G.S., Gillespie, T.W., 2019. Quantifying Drought Sensitivity of Mediterranean Climate Vegetation to Recent Warming: A Case Study in Southern California. Remote Sensing 11, 2902. https://doi.org/10.3390/rs11242902
  • Drewry, J.J., Cameron, K.C., Buchan, G.D., 2008. Pasture yield and soil physical property responses to soil compaction from treading and grazing—a review. Soil Research 46, 237-256. https://doi.org/DOI: 10.1071/SR07125
  • Egidi, G., Cividino, S., Paris, E., Palma, A., Salvati, L., Cudlin, P., 2021. Assessing the impact of multiple drivers of land sensitivity to desertification in a Mediterranean country. Environmental Impact Assessment Review 89, 106594. https://doi.org/10.1016/j.eiar.2021.106594
  • Fernandez-Anez, N., Krasovskiy, A., Müller, M., [et alii], 2021. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air, Soil and Water Research 14, 11786221211028184. https://doi.org/10.1177/11786221211028185
  • Fernándezâ-González, S., Río, S. del, Castro, A., Penas, A., Fernándezâ-Raga, M., Calvo, A.I., Fraile, R., 2012. Connection between NAO, weather types and precipitation in León, Spain (1948-2008). International Journal of Climatology 32, 2181-2196. https://doi.org/10.1002/joc.2431
  • Fernandezâ-Raga, M., Castro, A., Marcos, E., Palencia, C., Fraile, R., 2017. Weather types and rainfall microstructure in Leon, Spain. International Journal of Climatology 37, 1834-1842. https://doi.org/10.1002/joc.4816
  • Furl, C., Sharif, H., Zeitler, J.W., Hassan, A.E., Joseph, J., 2018. Hydrometeorology of the catastrophic Blanco River flood in South Texas, May 2015. Journal of Hydrology: Regional Studies 15, 90-104. https://doi.org/10.1016/j.ejrh.2017.12.001
  • Gilabert, J., Llasat, M.C., 2018. Circulation weather types associated with extreme flood events in Northwestern Mediterranean. International Journal of Climatology 38, 1864-1876. https://doi.org/10.1002/joc.5301
  • Guillot, E., Hinsinger, P., Dufour, L., Roy, J., Bertrand, I., 2019. With or without trees: Resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biology and Biochemistry 129, 122-135. https://doi.org/10.1016/j.soilbio.2018.11.011
  • Hajigholizadeh, M., Melesse, A.M., Fuentes, H.R., 2018. Erosion and sediment transport modelling in shallow waters: A review on approaches, models and applications. International Journal of Environmental Research and Public Health 15. https://doi.org/10.3390/ijerph15030518
  • Hess, P., Brezowsky, H., 2010. Katalog der Groß wetterlagen Europas (catalog of the European large scale weather types) (No. 119). Potsdam-Institut für Klimafolgenforschung e.V., Potsdam.
  • Hochman, A., Alpert, P., Harpaz, T., Saaroni, H., Messori, G., 2019. A new dynamical systems perspective on atmospheric predictability: Eastern Mediterranean weather regimes as a case study. Science Advances 5, eaau0936. https://doi.org/10.1126/sciadv.aau0936
  • Izquierdo, T., Abad, M., Gómez, Y., Gallardo, D., Rodríguez-Vidal, J., 2021. The March 2015 catastrophic flood event and its impacts in the city of Copiapó (southern Atacama Desert). An integrated analysis to mitigate future mudflow derived damages. Journal of South American Earth Sciences 105, 102975. https://doi.org/10.1016/j.jsames.2020.102975
  • Johnson, J.C., Williams, C.J., Guertin, D.P., Archer, S.R., Heilman, P., Pierson, F.B., Wei, H., 2021. Restoration of a shrub-encroached semi-arid grassland: Implications for structural, hydrologic, and sediment connectivity. Ecohydrology 14, e2281. https://doi.org/10.1002/eco.2281
  • Jones, P.D., Harpham, C., Briffa, K.R., 2013. Lamb weather types derived from reanalysis products. International Journal of Climatology 33, 1129-1139. https://doi.org/10.1002/joc.3498
  • Jónsson, J.Ö.G., Davíðsdóttir, B., 2016. Classification and valuation of soil ecosystem services. Agricultural Systems 145, 24-38.
  • Kairis, O., Karavitis, C., Salvati, L., Kounalaki, A., Kosmas, K., 2015. Exploring the Impact of Overgrazing on Soil Erosion and Land Degradation in a Dry Mediterranean Agro-Forest Landscape (Crete, Greece). Arid Land Research and Management 29, 360-374. https://doi.org/10.1080/15324982.2014.968691
  • Kassawmar, T., Gessesse, G.D., Zeleke, G., Subhatu, A., 2018. Assessing the soil erosion control efficiency of land management practices implemented through free community labor mobilization in Ethiopia. International Soil and Water Conservation Research 6, 87-98. https://doi.org/10.1016/j.iswcr.2018.02.001
  • Keesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., Visser, S., 2018a. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 7, 133. https://doi.org/10.3390/land7040133
  • Keesstra, S., Nunes, J.P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., Cerdà, A., 2018b. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment 644, 1557-1572. https://doi.org/10.1016/j.scitotenv.2018.06.342
  • Kidson, J.W., 2000. An analysis of New Zealand synoptic types and their use in defining weather regimes. International Journal of Climatology 20, 299-316. https://doi.org/10.1002/(SICI)1097- 0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B
  • Klik, A., Rosner, J., 2020. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil and Tillage Research 203, 104669. https://doi.org/10.1016/j.still.2020.104669
  • Köppen, W., Geiger, R., 1930. Handbuch der klimatologie. Gebrüder Borntraeger Berlin.
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259-263.
  • Krasa, J., Dostal, T., Jachymova, B., Bauer, M., Devaty, J., 2019. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs-Watershed analyses using WaTEM/SEDEM. Environmental Research 171, 470-483. https://doi.org/10.1016/j.envres.2019.01.044
  • Lamb, H.H., 1972. British Isles Weather Types and a Register of the Daily Sequence of Circulation Patterns, 1861- 1971. Stationery Office Books, London.
  • Larsen, J.I., MacDonald, L.H., Brown, E., Rough, D., Welsh, M.J., Pietraszek, J.H., Libohova, Z., BenavidesSolorio, J. de D., Schaffrath, K., 2009. Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? Soil Science Society of America Journal 73, 1393-1407.
  • Littmann, T., 2000. An empirical classification of weather types in the Mediterranean Basin and their interrelation with rainfall. Theor Appl Climatol 66, 161-171. https://doi.org/10.1007/s007040070022
  • Lopes, A.R., Girona-García, A., Corticeiro, S., Martins, R., Keizer, J.J., Vieira, D.C.S., 2021. What is wrong with post-fire soil erosion modelling? A meta-analysis on current approaches, research gaps, and future directions. Earth Surface Processes and Landforms 46, 205-219. https://doi.org/10.1002/esp.5020
  • López-Vicente, M., Kramer, H., Keesstra, S., 2021. Effectiveness of soil erosion barriers to reduce sediment connectivity at small basin scale in a fire-affected forest. Journal of Environmental Management 278, 111510. https://doi.org/10.1016/j.jenvman.2020.111510
  • Madarász, B., Jakab, G., Szalai, Z., Juhos, K., Kotroczó, Z., Tóth, A., Ladányi, M., 2021. Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil and Tillage Research 209, 104959. https://doi.org/10.1016/j.still.2021.104959
  • Martínez-Casasnovas, J.A., Ramos, M.C., García-Hernández, D., 2009. Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surface Processes and Landforms 34, 1927-1937. https://doi.org/10.1002/esp.1870
  • Martínez-Valderrama, J., Ibáñez, J., Del Barrio, G., Sanjuán, M.E., Alcalá, F.J., Martínez-Vicente, S., Ruiz, A., Puigdefábregas, J., 2016. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Science Total Environment. 563-564, 169-178. https://doi.org/10.1016/j.scitotenv.2016.04.065
  • Minea, G., Ioana-Toroimac, G., Moro, G., 2019. The dominant runoff processes on grassland versus bare soil hillslopes in a temperate environment An experimental study. Journal of Hydrology and Hydromechanics 67, 8. https://doi.org/10.2478/johh-2019-0018
  • Mohammed, S., Alsafadi, K., Talukdar, S., Kiwan, S., Hennawi, S., Alshihabi, O., Sharaf, M., Harsanyie, E., 2020. Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sensing Applications: Society and Environment 20, 100375. https://doi.org/10.1016/j.rsase.2020.100375
  • Munafò, M., Salvati, L., Zitti, M., 2013. Estimating soil sealing rate at national level-Italy as a case study. Ecological Indicators 26, 137-140. https://doi.org/10.1016/j.ecolind.2012.11.001
  • Nadalâ-Romero, E., Cortesi, N., Gonzálezâ-Hidalgo, J.C., 2014. Weather types, runoff and sediment yield in a Mediterranean mountain landscape. Earth Surface Processes and Landforms 39, 427-437. https://doi.org/10.1002/esp.3451
  • Nadal-Romero, E., González-Hidalgo, J.C., Cortesi, N., Desir, G., Gómez, J.A., Lasanta, T., Lucía, A., Marín, C., Martínez-Murillo, J.F., Pacheco, E., Rodríguez-Blanco, M.L., Romero Díaz, A., Ruiz-Sinoga, J.D., Taguas, E.V., Taboada-Castro, M.M., Taboada-Castro, M.T., Úbeda, X., Zabaleta, A., 2015. Relationship of runoff, erosion and sediment yield to weather types in the Iberian Peninsula. Geomorphology 228, 372- 381. https://doi.org/10.1016/j.geomorph.2014.09.011
  • Nearing, M.A., Pruski, F.F., O’Neal, M.R., 2004. Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation 59, 43-50.
  • Negese, A., Fekadu, E., Getnet, H., 2021. Potential Soil Loss Estimation and Erosion-Prone Area Prioritization Using RUSLE, GIS, and Remote Sensing in Chereti Watershed, Northeastern Ethiopia. Air, Soil and Water Research 14, 1178622120985814. https://doi.org/10.1177/1178622120985814
  • Neville, A., 2007. Mountains of Silver and Rivers of Gold: The Phoenicians in Iberia. Oxbow Books.
  • Norman, L.M., 2020. Ecosystem Services of Riparian Restoration: A Review of Rock Detention Structures in the Madrean Archipelago Ecoregion. Air, Soil and Water Research 13, 1178622120946337. https://doi.org/10.1177/1178622120946337
  • Novara, A., Stallone, G., Cerdà, A., Gristina, L., 2019. The Effect of Shallow Tillage on Soil Erosion in a SemiArid Vineyard. Agronomy 9, 257. https://doi.org/10.3390/agronomy9050257
  • Nuñez Mora, J.A., 2007. La riada de octubre de 1957 en Jávea. Análisis meteorológico y climático. AEMET Estudios. http://hdl.handle.net/20.500.11765/7873
  • Orgiazzi, A., Panagos, P., 2018. Soil biodiversity and soil erosion: It is time to get married: Adding an earthworm factor to soil erosion modelling. Global Ecology and Biogeography 27, 1155-1167. https://doi.org/10.1111/geb.12782
  • Panagos, P., Ballabio, C., Poesen, J., Lugato, E., Scarpa, S., Montanarella, L., Borrelli, P., 2020. A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sensing 12, 1365. https://doi.org/10.3390/rs12091365
  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C., 2015. The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy 54, 438- 447. https://doi.org/10.1016/j.envsci.2015.08.012
  • Pattison, I., Lane, S.N., 2012. The relationship between Lamb weather types and long-term changes in flood frequency, River Eden, UK. International Journal of Climatology 32, 1971-1989. https://doi.org/10.1002/joc.2415
  • Peña-Angulo, D., Estrany, J., García-Comendador, J., Fortesa, J., Tomàs-Burguera, M., Company, J., Alorda, B., Nadal-Romero, E., 2021. Influence of weather types on the hydrosedimentary response in three small catchments on the Island of Mallorca, Spain. Environmental Research 192, 110324. https://doi.org/10.1016/j.envres.2020.110324
  • Peña-Angulo, D., Nadal-Romero, E., González-Hidalgo, J.C., [et alii], 2019. Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. Journal of Hydrology 571, 390-405. https://doi.org/10.1016/j.jhydrol.2019.01.059
  • Peña-Angulo, D., Nadal-Romero, E., González-Hidalgo, J.C., Albaladejo, J., Andreu, V., Barhi, H., Bernal, S., Biddoccu, M., Bienes, R., Campo, J., Campo-Bescós, M.A., Canatário-Duarte, A., Cantón, Y., Casali, J., Castillo, V., Cavallo, E., Cerdà, A., Cid, P., Cortesi, N., Desir, G., Díaz-Pereira, E., Espigares, T., Estrany, J., Farguell, J., Fernández-Raga, M., Ferreira, C.S., Ferro, V., Gallart, F., Giménez, R., Gimeno, E., Gómez, J.A., Gómez-Gutiérrez, A., Gómez-Macpherson, H., González-Pelayo, O., Kairis, O., Karatzas, G.P., Keesstra, S., Klotz, S., Kosmas, C., Lana-Renault, N., Lasanta, T., Latron, J., Lázaro, R., Le Bissonnais, Y., Le Bouteiller, C., Licciardello, F., López-Tarazón, J.A., Lucía, A., Marín-Moreno, V.M.,
  • Marín, C., Marqués, M.J., Martínez-Fernández, J., Martínez-Mena, M., Mateos, L., Mathys, N., MerinoMartín, L., Moreno-de las Heras, M., Moustakas, N., Nicolau, J.M., Pampalone, V., Raclot, D., Rodríguez-Blanco, M.L., Rodrigo-Comino, J., Romero-Díaz, A., Ruiz-Sinoga, J.D., Rubio, J.L., Schnabel, S., Senciales-González, J.M., Solé-Benet, A., Taguas, E.V., Taboada-Castro, M.T., TaboadaCastro, M.M., Todisco, F., Úbeda, X., Varouchakis, E.A., Wittenberg, L., Zabaleta, A., Zorn, M., 2020. Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin. Atmosphere 11, 609. https://doi.org/10.3390/atmos11060609
  • Piñol, J., Terradas, J., Lloret, F., 1998. Climate Warming, Wildfire Hazard, and Wildfire Occurrence in Coastal Eastern Spain. Climatic Change 38, 345-357. https://doi.org/10.1023/A:1005316632105
  • Portugués-Mollá, I., Bonache-Felici, X., Mateu-Bellés, J.F., Marco-Segura, J.B., 2016. A GIS-Based Model for the analysis of an urban flash flood and its hydro-geomorphic response. The Valencia event of 1957. Journal of Hydrology, Flash floods, hydro-geomorphic response and risk management 541, 582-596. https://doi.org/10.1016/j.jhydrol.2016.05.048
  • Prasuhn, V., 2020. Twenty years of soil erosion on-farm measurement: Annual variation, spatial distribution and the impact of conservation programmes for soil loss rates in Switzerland. Earth Surface Processes and Landforms 45, 1539-1554. https://doi.org/10.1002/esp.4829
  • Raclot, D., Le Bissonnais, Y., Louchart, X., Andrieux, P., Moussa, R., Voltz, M., 2009. Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agriculture, Ecosystems & Environment 134, 201-210. https://doi.org/10.1016/j.agee.2009.06.019
  • Radziemska, M., Bęś, A., Gusiatin, Z.M., Cerdà, A., Mazur, Z., Jeznach, J., Kowal, P., Brtnický, M., 2019. The combined effect of phytostabilization and different amendments on remediation of soils from post-military areas. Science of The Total Environment 688, 37-45. https://doi.org/10.1016/j.scitotenv.2019.06.190
  • Ramos, A.M., Barriopedro, D., Dutra, E., 2015. Circulation weather types as a tool in atmospheric, climate, and environmental research. Frontiers in Environmental Science 3. https://doi.org/10.3389/fenvs.2015.00044
  • Rodrigo-Comino, J., Salvia, R., Egidi, G., Salvati, L., Giménez-Morera, A., Quaranta, G., 2021. Desertification and Degradation Risks vs Poverty: A Key Topic in Mediterranean Europe. Cuadernos de Investigación Geográfica 48(1), 23-40. https://doi.org/10.18172/cig.4850
  • Rodrigo-Comino, J., Senciales, J.M., Sillero-Medina, J.A., Gyasi-Agyei, Y., Ruiz-Sinoga, J.D., Ries, J.B., 2019. Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the Axarquía Region (Málaga, Spain). Air, Soil and Water Research 12, 1178622119839403. https://doi.org/10.1177/1178622119839403
  • Rodrigo-Comino, J., Senciales-González, J.M., Terol, E., Mora-Navarro, G., Gyasi-Agyei, Y., Cerdà, A., 2020a. Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler del Roure” Experimental Research in Eastern Spain. Atmosphere 11, 551. https://doi.org/10.3390/atmos11060551
  • Rodrigo-Comino, J., Terol, E., Mora, G., Giménez-Morera, A., Cerdà, A., 2020b. Vicia sativa Roth. Can Reduce Soil and Water Losses in Recently Planted Vineyards (Vitis vinifera L.). Earth Syst Environ 4, 827-842. https://doi.org/10.1007/s41748-020-00191-5
  • Rodríguez-Seijo, A., Santos, B., Silva, E.F. da, Cachada, A., Pereira, R., 2018. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environmental Chemistry 16, 8-17. https://doi.org/10.1071/EN18162
  • Rutebuka, J., Munyeshuli Uwimanzi, A., Nkundwakazi, O., Mbarushimana Kagabo, D., Mbonigaba, J.J.M., Vermeir, P., Verdoodt, A., 2021. Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda. Journal of Environmental Management 277, 111369. https://doi.org/10.1016/j.jenvman.2020.111369
  • Schroeder, M.J., Glovinsky, M., Henricks, V.F., Hood, F.C., Hull, M.K., 1964. Synoptic weather types associated with critical fire weather. Pacific Southwest Forest and Range Experiment Station, Berkeley CA.
  • Senciales-González, J.M., Ruiz-Sinoga, J.D., 2020. Features of weather types involving heavy rainfall along the southern Spanish Mediterranean. Cuadernos de Investigación Geográfica 47 (1), 221-242. https://doi.org/10.18172/cig.4765
  • Smith, J.A., Baeck, M.L., Steiner, M., Miller, A.J., 1996. Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: The Rapidan Storm of June 27, 1995. Water Resources Research 32, 3099- 3113. https://doi.org/10.1029/96WR02107
  • Sobral, A.C., Peixoto, A.S.P., Nascimento, V.F., Rodgers, J., da Silva, A.M., 2015. Natural and anthropogenic influence on soil erosion in a rural watershed in the Brazilian southeastern region. Regional Environmental Change 15, 709-720. https://doi.org/10.1007/s10113-014-0667-z
  • Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC, USA.
  • Sun, L., Fang, H., Qi, D., Li, J., Cai, Q., 2013. A review on rill erosion process and its influencing factors. Chinese Geographical Science 23, 389-402. https://doi.org/10.1007/s11769-013-0612-y
  • Telak, L.J., Dugan, I., Bogunovic, I., 2021. Soil Management and Slope Impacts on Soil Properties, Hydrological Response, and Erosion in Hazelnut Orchard. Soil Systems 5, 5. https://doi.org/10.3390/soilsystems5010005
  • Trigo, R.M., DaCamara, C.C., 2000. Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology 20, 1559-1581. https://doi.org/10.1002/1097- 0088(20001115)20:13<1559::AID-JOC555>3.0.CO;2-5
  • Vanwalleghem, T., Amate, J.I., de Molina, M.G., Fernández, D.S., Gómez, J.A., 2011. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agriculture, Ecosystems & Environment 142, 341-351. https://doi.org/10.1016/j.agee.2011.06.003
  • Vautard, R., Yiou, P., D’Andrea, F., Noblet, N., Viovy, N., Cassou, C., Polcher, J., Ciais, P., Kageyama, M., Fan, Y., 2007. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophysical Research Letters 34, 1-5. https://doi.org/10.1029/2006GL028001
  • Vicente-Serrano, S.M., González-Hidalgo, J.C., Luis, M. de, Raventós, J., 2004. Drought patterns in the Mediterranean area: the Valencia region (eastern Spain). Climate Research 26, 5-15. https://doi.org/10.3354/cr026005
  • Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29-38.
  • Xie, J., Xue, W., Li, C., Yan, Z., Li, D., Li, G., Chen, X., Chen, D., 2019. Water-soluble phosphorus contributes significantly to shaping the community structure of rhizospheric bacteria in rocky desertification areas. Scientific Report 9, 18408. https://doi.org/10.1038/s41598-019-54943-z
  • Zhao, Z., Shen, Y., Wang, Q., Jiang, R., 2020. The temporal stability of soil moisture spatial pattern and its influencing factors in rocky environments. Catena 187, 104418. https://doi.org/10.1016/j.catena.2019.104418