Assessment of Land Degradation and Droughts in an Arid Area Using Drought Indices, Modified Soil-Adjusted Vegetation Index and Landsat Remote Sensing Data

  1. Derdour, Abdessamed 1
  2. Jodar Abellan, Antonio 2
  3. Melian-Navarro, Amparo 3
  4. Bailey, Ryan 4
  1. 1 University Center Salhi Ahmed Naama
  2. 2 Universidad de Alicante, España. https://www.researchgate.net/profile/Antonio-Jodar-Abellan https://orcid.org/0000-0003-3373-8952?lang=es
  3. 3 Universidad Miguel Hernández de Elche
    info

    Universidad Miguel Hernández de Elche

    Elche, España

    ROR https://ror.org/01azzms13

  4. 4 Colorado State University
    info

    Colorado State University

    Fort Collins, Estados Unidos

    ROR https://ror.org/03k1gpj17

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Rodrigo Comino, Jesús (ed. lit.)
  2. Muñoz Gómez, Casandra (ed. lit.)
  3. Rahdari, Mohammad Reza (ed. lit.)
  4. Salvati, Luca (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2023

Título del ejemplar: Land Degradation Risks: Key Topics to be faced over the world

Volumen: 49

Número: 2

Páginas: 65-81

Tipo: Artículo

DOI: 10.18172/CIG.5523 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

Ain Sefr, en las montañas Ksour, está situada en el suroeste de Argelia, donde el clima es árido. El área de estudio se enfrenta progresivamente a la regresión y degradación exacerbada por el cambio climático. Estas tendencias apuntan a una aceleración significativa de la desertificación y la sequía y a la pérdida de sistemas de producción que desempeñan un papel social, ecológico y económico crítico en la región. Para comprender mejor el peligro natural de la sequía en Ain Sefra y el impacto del cambio climático, se varios índices de sequía y datos de teledetección. Al analizar los registros de precipitación desde 1965 hasta 2021, a través de varios índices de sequía, se identificaron las sequías como un fenómeno recurrente. Además, la frecuencia de años secos sucesivos es relativamente alta. Hubo tres períodos secos continuos más prolongados. La primera fase duró siete años, de 1980 a 1987, la segunda doce años, de 1994 a 2006, y la tercera nueve años, de 2012 a 2021. El cálculo del Índice de Vegetación Ajustado al Suelo Modificado (MSAVI) para cinco imágenes satelitales multifecha nos permitió seguir la evolución de los elementos de uso del suelo en esta región desde 1977 hasta 2017. De hecho, el estudio de estas imágenes multitemporales revela un crecimiento considerable de arenas, moviéndose hacia el norte y noreste de la zona durante las últimas décadas. La combinación de índices de sequía y sensores remotos parece ser muy prometedores, pues sus resultados son valiosas herramientas de orientación y apoyo a la decisión de los entes locales y regionales.

Referencias bibliográficas

  • AghaKouchak, A., Farahmand, A., Melton, F., Teixeira, J., Anderson, M., Wardlow, B. D., Hain, C., 2015. Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics 53(2), 452-480. https://doi.org/10.1002/2014rg000456
  • Bergaoui, M., Alouini, A., 2002. Caractérisation de la sécheresse météorologique et hydrologique: cas du bassin versant de Siliana en Tunisie. Science et changements planétaires/Sécheresse 12(4), 205-213.
  • Boix-Fayos, C., Boerboom, L.G.J, Janssen, R., Martínez-Mena, M., Almagro, M., Pérez-Cutillas, P., Eekhout, J.P.C., Castillo, V., de Vente, J., 2020. Mountain ecosystem services affected by land use changes and hydrological control works in Mediterranean catchments. Ecosystem Services 44, 101136. https://doi.org/10.1016/j.ecoser.2020.101136
  • Bouabdelli, S., Meddi, M., Zeroual, A., Alkama, R., 2020. Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. Journal of Water Climate Change 11(S1), 164-188. https://doi.org/10.2166/wcc.2020.207
  • Bouarfa, S., Abdessamed, D., Okkacha, Y., Almaliki, A.H., Jodar-Abellan, A., Hussein, E.E., 2022a. Sedimentological investigation of the potential origin and provenance of sand deposits in an arid area: a case study of the Ksour Mountains Region in Algeria. Arabian Journal of Geosciences 15, 1460. https://doi.org/10.1007/s12517-022-10697-z
  • Bouarfa, S., Youb, O., Khaouani, B., Berrabah, D., Djoudi, W., 2022b. Assessing Aeolian Sand Potential in Ain Sefra Region-Southwestern of Algeria. Technium Social Sciences Journal 30(1), 710-726. https://doi.org/10.47577/tssj.v30i1.6169
  • Cámara-Artigas, R., de Souza, B.I., de Lima, R.P., 2022. Climatic changes and distribution of plant formations in the state of Paraíba, Brazil. Cuadernos de Investigación Geográfica 48, 157-174. https://doi.org/10.18172/cig.5044
  • Camarasa-Belmonte, A.M., 2021. Flash-flooding of Ephemeral Streams in the Context of Climate Change. Cuadernos de Investigación Geográfica 47, 121-142. https://doi.org/10.18172/cig.4838
  • Corwin, D.L., 2021. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science 72(2), 842-862. https://doi.org/10.1111/ejss.13010
  • Cimusa-Kulimushi, L., Bigabwa-Bashagaluke, J., Prasad, P., Heri-Kazi, A.B., Lal Kushwaha, N., Masroor, M.D., Choudhari, P., Elbeltagi, A., Sajjad, H., Mohammed, S., 2023. Soil erosion susceptibility mapping using ensemble machine learning models: A case study of upper Congo River sub-basin. Catena 222, 106858. https://doi.org/10.1016/j.catena.2022.106858
  • Derdour, A., Bouanani, A. 2019. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environmental Earth Sciences 78(19), 1-17. https://doi.org/10.1007/s12665-019-8604-6
  • Derdour, A., Bouanani, A., Babahamed, K., 2017a. Floods typology in semiarid environment: Case of Ain Sefra watershed (Ksour mountains, Saharian atlas, SW of Algeria). Journal of Fundamental and Applied Sciences (29), 283-299. https://doi.org/10.4314/JFAS.V10I3.29
  • Derdour, A., Bouanani, A., Babahamed, K., 2017b. Hydrological modeling in semi-arid region using hec-hms model. Case study in Ain Sefra watershed, Ksour mountains (sw-Algeria). Journal of Fundamental and Applied Sciences 9(2), 1027-1049. http://dx.doi.org/10.4314/jfas.v9i2.27
  • Derdour, A., Mahamat Ali, M. M., Chabane Sari, S. M. 2020. Evaluation of the quality of groundwater for its appropriateness for drinking purposes in the watershed of Naama, SW of Algeria, by using water quality index (WQI). SN Applied Sciences 2(12), 1-14. https://doi.org/10.1007/s42452-020-03768-x
  • Edwards, D.C., Thomas, M.B., 1997. Characteristics of 20th century drought in the United States at multiple time scales. Report. Colorado State University, Fort Collins, USA. Available at: https://mountainscholar.org/handle/10217/170176
  • Eekhout, J.P.C., Boix-Fayos, C., Pérez-Cutillas, P., de Vente, J., 2020. The impact of reservoir construction and changes in land use and climate on ecosystem services in a large Mediterranean catchment. Journal of Hydrology 590, 125208. https://doi.org/10.1016/j.jhydrol.2020.125208
  • Eekhout, J.P.C., Millares-Valenzuela, A., Martínez-Salvador, A., García‐Lorenzo, R., Pérez‐Cutillas, P., Conesa‐García, C., de Vente, J., 2021. A process-based soil erosion model ensemble to assess model uncertainty in climate-change impact assessments. Land Degradation and Development 32, 2409-2422. https://doi.org/10.1002/ldr.3920
  • Eklund, L., Seaquist, J. 2015. Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan. Natural Hazards 76(1), 421-441. https://doi.org/10.1007/s11069-014-1504-x
  • Fadhil, A.M., 2011. Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region. International Journal of Digital Earth 4(3), 239-257. https://doi.org/10.1080/17538947.2010.489971
  • Golian, S., Mazdiyasni, O., AghaKouchak, A., 2015. Trends in meteorological and agricultural droughts in Iran. Theoretical Applied Climatology 119(3), 679-688. https://doi.org/10.1007/s00704-014-1139-6
  • Guo, Y., Huang, S., Huang, Q., Wang, H., Fang, W., Yang, Y., Wang, L., 2019. Assessing socioeconomic drought based on an improved Multivariate Standardized Reliability and Resilience Index. Journal of Hydrology 568, 904-918. https://doi.org/10.1016/j.jhydrol.2018.11.055
  • Habibi, B., Meddi, M., Torfs, P. J., Remaoun, M., Van Lanen, H. A., 2018. Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). Journal of Hydrology: Regional Studies 16, 15-31. https://doi.org/10.1016/j.ejrh.2018.02.005
  • Haddouche, I., Toutain, B., Saidi, S., Mederbal, K., 2008. How to reconcile the development of steppe populations and the fight against desertification? Case of the wilaya of Nâama (Algeria). Food and Agricultural Organization of the United Nations 7 (3): 25-31. https://agris.fao.org/agris-search/search.do?recordID=QC2013000069
  • Ibañez, J., Gartzia, R., Alcalá, F.J., Martínez-Valderrama, J., 2022. The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers. Land 11, 1626. https://doi.org/10.3390/land11101626
  • IOWA, 2022. IOWA State University, IOWA Enviromental Mesonet: ASOS-AWOS-METAR Data Download. Retrieved from https://mesonet.agron.iastate.edu/request/download.phtml?network=DZ ASOS&fbclid=IwAR2kyKYKq2gy98a2tBKVSHzlKwHSXgdjovmDHQOdSl_8wmgbkwcmKmmr9YA
  • Jain, V.K., Pandey, R.P., Jain, M.K., Byun, H.R., 2015. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Climate Extremes 8, 1-11 https://doi.org/10.1016/j.wace.2015.05.002
  • Jodar-Abellan, A., Ruiz, M., Melgarejo, J., 2018. Climate change impact assessment on a hydrologic basin under natural regime (SE, Spain) using a SWAT model. Revista Mexicana de Ciencias Geológicas 35 (3), 240-253. http://dx.doi.org/10.22201/cgeo.20072902e.2018.3.564
  • Jodar-Abellan, A., Fernández-Aracil, P., Melgarejo-Moreno, J., 2019. Assessing Water Shortage through a Balance Model among Transfers, Groundwater, Desalination, Wastewater Reuse, and Water Demands (SE Spain). Water 11 (5): 1009-1027. https://doi.org/10.3390/w11051009
  • Juárez, O., Corbat, M.C., Fucks, E., 2022. Evolución y dinámica geomorfológica de la cuenca del río Amarillo, en el Sistema del Famatina (La Rioja, Argentina). Revista Mexicana de Ciencias Geológicas 39, 1. 54-70. http://dx.doi.org/10.22201/cgeo.20072902e.2022.1.1637
  • Keyantash, J., 2018. The Climate Data Guide: Standardized Precipitation Index (SPI). Retrieved from https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi
  • Kogan, F., Guo, W., 2016. Early twenty-first-century droughts during the warmest climate. Geomatics, Natural Hazards Risk 7(1), 127-137. https://doi.org/10.1080/19475705.2013.878399
  • Lazri, M., Ameur, S., Brucker, J. M., Lahdir, M., Sehad, M., 2015. Analysis of drought areas in northern Algeria using Markov chains. Journal of Earth System Science 124(1), 61-70. https://doi.org/10.1007/s12040-014-0500-6
  • Li, L., She, D., Zheng, H., Lin, P., Yang, Z.L., 2020. Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China. Journal of Hydrometeorology 21(7), 1513-1530. https://doi.org/10.1175/jhm-d-19-0290.1
  • Malhi, G.S., Kaur, M., Kaushik, P., 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 13(3), 1318. https://doi.org/10.3390/su13031318
  • McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology. 17-22. California. Available at: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf
  • Mendoza-Uribe, I., 2022. Identification of changes in the rainfall regime in Chihuahua's state (México). Cuadernos de Investigación Geográfica 48, 111-132. https://doi.org/10.18172/cig.5049
  • Mishra, A.K., Singh, V.P. 2010. A review of drought concepts. Journal of Hydrology 391(1-2), 202- 216. https://doi.org/10.1016/j.jhydrol.2010.07.012
  • Niñerola, A., Ferrer-Rullan, R., Vidal-Suñé, A., 2020. Climate change mitigation: Application of management production philosophies for energy saving in industrial processes. Sustainability 12(2), 717. https://doi.org/10.3390/su12020717
  • Oliveira-Santos, N., Souza-Machado, R.A., Lois-González, R.C., 2022. Identification of levels of anthropization and its implications in the process of desertification in the Caatinga biome (Jeremoabo, Bahia-Brazil). Cuadernos de Investigación Geográfica, 48. 41-57. https://doi.org/10.18172/cig.5212
  • Palacios-Cabrera, T.A., Valdés-Abellán, J., Jódar-Abellán, A., Rodrigo-Comino, J., 2022. Land-use changes and precipitation cycles to understand hydrodynamic responses in semiarid Mediterranean karstic watersheds. Science of the Total Environment 819 (153182), 1-12. https://doi.org/10.1016/j.scitotenv.2022.153182
  • Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment 48(2), 119-126. https://doi.org/10.1016/0034- 4257(94)90134-1
  • Rahdari, M.R., Rodríguez-Seijo, A., 2021. Monitoring Sand Drift Potential and Sand Dune Mobility over the Last Three Decades (Khartouran Erg, Sabzevar, NE Iran). Sustainability 13, 9050. https://doi.org/10.3390/su13169050
  • Ripple, W.J., Wolf, C., Newsome, T.M., Gregg, J.W., Lenton, T.M., Palomo, I., Duffy, P.B., 2021. World scientists´s warning of a climate emergency 2021. BioScience 71(9), 894-898. https://doi.org/10.1093/biosci/biz088
  • Rodrigo-Comino, J., Salvia, R., Egidi, G., Salvati, L., Giménez-Morera, A., Quaranta, G., 2022. Desertification and Degradation Risks vs Poverty: A Key Topic in Mediterranean Europe. Cuadernos de Investigación Geográfica 48 (1), 23-40. https://doi.org/10.18172/cig.4850
  • Seltzer, P., 1946. Le climat de l’Algérie. Inst. Météor. et de phys-du globe. Univ. Alger. 219 pag. Available at: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1268152.
  • Silva, L.F., de Souza, B.I., Cámara, A.R., 2022. Identification of desertified and preserved areas in a conservation unit in the state of Paraíba-Brazil. Cuadernos de Investigación Geográfica 48(1), 59-78. https://doi.org/10.18172/cig.5098
  • Sobral, B.S., de Oliveira-Junior, J.F., de Gois, G., Pereira-Júnior, E.R., de Bodas Terassi, P.M., Muniz-Júnior, J.G.R., Zeri, M., 2019. Drought characterization for the state of Rio de Janeiro based on the annual SPI index: trends, statistical tests and its relation with ENSO. Atmospheric Research, 220, 141-154. https://doi.org/10.1016/j.atmosres.2019.01.003
  • Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., Vogt, J., 2014. World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34(8), 2792-2804. https://doi.org/10.1002/joc.3875
  • Stagge, J.H., Tallaksen, L.M., Gudmundsson, L., Van Loon, A.F., Stahl, K., 2015. Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027-4040. https://doi.org/10.1002/joc.4267
  • Tahir, F., Ajjur, S.B., Serdar, M.Z., Al-Humaiqani, M., Kim, D., Al-Thani, S.K., Al-Ghamdi, S.G., 2021. Qatar Climate Change Conference 2021: A Platform for addressing key climate change topics facing Qatar and the world. Report available at: https://www.academia.edu/66926850/Qatar_Climate_Change_Conference_2021_A_Platform_for_addressing_key_climate_change_topics_facing_Qatar_and_the_world
  • Thom, H.C.S., 1966. Some methods of climatological analysis. World Meteorological Organization. Technical Note nº 81, 69 pages. Available at: https://library.wmo.int/doc_num.php?explnum_id=1961
  • Tsakiris, G., Vangelis, H., 2004. Towards a drought watch system based on spatial SPI. Water Resources Management 18(1), 1-12. https://doi.org/10.1023/b:warm.0000015410.47014.a4
  • UN, 2022. Provisional State of the Global Climate 2022. United Nations (UN). 60 pages. Report available at: https://www.un.org/en/climatechange/reports
  • USGS, 2022. The USGS Global Visualization Viewer (GloVis), Landsat Data. Retrieved from https://glovis.usgs.gov/
  • Valdes-Abellán, J., Pardo, M.A., Jodar-Abellan, A., Pla, C., Fernandez-Mejuto., M. 2020. Climate change impact on karstic aquifer hydrodynamics in southern Europe semi-arid region using the KAGIS model. Science of the Total Environment 723 (138110), 1-9. https://doi.org/10.1016/j.scitotenv.2020.138110
  • Van Leeuwen, C.C.E., Cammeraat, E.L.H., de Vente, J., Boix-Fayos, C., 2019. The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. Land Use Policy 83, 174-186. https://doi.org/10.1016/j.landusepol.2019.01.018
  • Wang, G., 2005. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC. 4th Assessment. Climate dynamics 25(7), 739-753. https://doi.org/10.1007/s00382-005-0057-9
  • Wardlow, B.D., Anderson, M.C., Verdin, J.P., 2012. Remote sensing of drought: Innovative monitoring approaches. Publisher CRC Press. 484 pages. Available at: https://www.routledge.com/Remote-Sensing-of-Drought-Innovative-Monitoring-Approaches/Wardlow-Anderson-Verdin/p/book/9781138075207#
  • West, H., Quinn, N., Horswell, M., 2019. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment 232, 111291. https://doi.org/10.1016/j.rse.2019.111291
  • Wilhite, D.A., 2000. Drought as a natural hazard: concepts and definitions. In Donald A. Wilhite (Ed.), Drought: A Global Assessment, Vol. I, pp. 3–18. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1068&context=droughtfacpub
  • Zhang, A., Jia, G., 2013. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134, 12-23. https://doi.org/10.1016/j.rse.2013.02.023