Effect of tillage systems combined with plastic film mulches and fertilizers on soil physical properties in a wheat-agricultural site in southern Iraq

  1. Gatea Al-Shammary, Ahmed Abed 1
  2. Lahmod, Nabil Raheem 2
  3. Fernández-Gálvez, Jesús 3
  4. Caballero-Calvo, Andrés 4
  1. 1 Soil Science and Water Resources Departments, College of Agriculture University of Wasit
  2. 2 Field crops department, College of Agriculture University of Wasit
  3. 3 Department of Regional Geographical Analysis and Physical Geography University of Granada
  4. 4 Dpto. de Análisis Geográfico Regional y Geografía Física Universidad de Granada
Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Rodrigo Comino, Jesús (ed. lit.)
  2. Muñoz Gómez, Casandra (ed. lit.)
  3. Rahdari, Mohammad Reza (ed. lit.)
  4. Salvati, Luca (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2023

Título del ejemplar: Land Degradation Risks: Key Topics to be faced over the world

Volumen: 49

Número: 2

Páginas: 51-63

Tipo: Artículo

DOI: 10.18172/CIG.5544 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

Este estudio investiga la influencia de tres sistemas de labranza (convencional, económico y con mantillo) cuando se combinan con diferentes aplicaciones de fertilizantes y cobertura plástica del suelo en propiedades físicas del suelo (SPP), a 0-20 cm de profundidad, en un área agrícola de trigo, durante el verano (del 1 de junio al 31 de julio de 2015). Los SPP incluyen la porosidad del suelo (Φ), el contenido volumétrico de agua del suelo 60 días después del riego a capacidad de campo (q60) y el diámetro medio ponderado de los agregados (MWD). El término cultivo con mantillo se refiere aquí a una práctica de conservación en la que la superficie del suelo es alterada por la labranza, de modo que los residuos del cultivo se mezclan con el suelo y una cierta cantidad de estos residuos permanece en la superficie del suelo. El mulching se refiere a la colocación de material inorgánico sobre la superficie del suelo para protegerlo. Los tratamientos del suelo incluyeron el sistema de labranza convencional que utiliza una combinación de arado de vertedera y grada de discos (MP+DH), labranza económica que usa un cultivador rotativo (RC) y labranza de cobertura que utiliza un arado de cincel (MT+CP); mulching plástico del suelo: mulching transparente (TM), mulching negro (BM) de 200 cm de ancho con 0,05 cm de espesor, y sin mulching (WM); y fertilizantes: fertilizante orgánico compuesto (CoF), fertilizante orgánico no compuesto (NoF) y fertilizante químico (ChF). El diseño de parcelas subdivididas bajo el diseño de bloques completos al azar (RCBD) se estableció en 27 tratamientos con 3 repeticiones, para cartografiar Φ, q60 y MWD en base a 81 muestras de suelo con todos los tratamientos. Los resultados mostraron que los diferentes tratamientos del suelo tienen diversos impactos en SPP. MP+DH alcanzó el mayor q60 (0,22 cm3 cm-3), MWD (0,85 mm) y Φ (56,87%). Por otro lado, MT+CP obtuvo un MWD mayor de 0,98 mm y un Φ menor de 49% en comparación con otros sistemas de labranza. El mantillo del suelo modificó significativamente el SPP, con BM alcanzando el mayor Φ (55,65%), q60 (0,35 cm3 cm-3) y MWD (1,06 mm). Los resultados no indicaron diferencias significativas entre los tipos de fertilizantes en SPP. El CoF tuvo un efecto significativo en MWD y se relacionó con las características del suelo estudiadas. Estos hallazgos pueden ayudarnos a comprender los efectos individuales y combinados del sistema de labranza, el mulching y la aplicación de fertilizantes en algunas características del suelo en el cultivo del trigo. Un estudio más centrado en la influencia de las profundidades de labranza y los tipos de mulchings (mulching de plástico versus mulching orgánico para diferentes cultivos) en una variedad de suelos y condiciones climáticas, así como en las propiedades térmicas del suelo, necesitaría una investigación más profunda.

Referencias bibliográficas

  • Adekalu, K.O., Okunade, D.A., Osunbitan, J.A., 2006. Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural soils. Geoderma 137(1), 226-230. https://doi.org/10.1016/j.geoderma.2006.08.012
  • Agarwal, A., Prakash, O., Sahay, D., Bala, M., 2022. Effect of organic and inorganic mulching on weed density and productivity of tomato (Solanum lycopersicum L.). Journal of Agriculture and Food Research 7, 100274. https://doi.org/10.1016/j.jafr.2022.100274
  • Al-Shammary, A., Al-Sadoon, J., 2014. Influence of tillage depth, soil mulching systems and fertilizers on some thermal properties of silty clay soil. GJAR 2, 18-32.
  • Al-Shammary, A., Kouzani, A., Gyasi-Agyei, Y., Gates, W., Rodrigo-Comino, J., 2020. Effects of solarisation on soil thermal-physical properties under different soil treatments: A review. Geoderma 363, 114137. https://doi.org/10.1016/j.geoderma.2019.114137
  • Anikwe, M., Mbah, C., Ezeaku, P., Onyia, V., 2007. Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam (Colocasia esculenta) on an ultisol in southeastern Nigeria. Soil and Tillage Research 93(2), 264-272. https://doi.org/10.1016/j.still.2006.04.007
  • Arvidsson, J., Etana, A., Rydberg, T., 2014. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983–2012. European Journal of Agronomy 52, 307-315. https://doi.org/10.1016/j.eja.2013.08.002
  • Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Mosaddeghi, M.R., Schulin, R., 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena 111, 72-79. https://doi.org/10.1016/j.catena.2013.07.001
  • Bhardwaj, R.L., Sarolia, D., 2013. Effect of mulching on crop production under rainfed condition-A review. Agricultural Reviews 34(3), 188-197. htpps://doi.org/10.5958/j.0976-0741.34.3.003
  • Braunack, M., Johnston, D., Price, J., Gauthier, E., 2015. Soil temperature and soil water potential under thin oxodegradable plastic film impact on cotton crop establishment and yield. Field Crops Research 184, 91-103. https://doi.org/10.1016/j.fcr.2015.09.009
  • Bu, L.-D., Liu, J.-l., Zhu, L., Luo, S.-s., Chen, X.-p., Li, S.-q., Hill, R.L., Zhao, Y., 2013. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management 123, 71-78. https://doi.org/10.1016/j.agwat.2013.03.015
  • Chen, J., Pang, D.-w., Jin, M., Luo, Y.-l., Li, H.-y., Li, Y., Wang, Z.-l., 2020. Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat. Journal of Integrative Agriculture 19(5), 1215-1226. https://doi.org/10.1016/S2095-3119(19)62679-1
  • Crittenden, S., de Goede, R., 2016. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming. European Journal of Soil Biology 77, 26-33. https://doi.org/10.1016/j.ejsobi.2016.09.003
  • Deng, J., Deng, Y., Sun, Z., Wang, G., Cao, L., Yuan, H., Huang, D., Jia, H., 2022. Tillage and residue management affect growing-season soil respiration in paddy fields. Soil and Tillage Research 218, 105315. https://doi.org/10.1016/j.still.2022.105315
  • Figueiredo, P.G., Bicudo, S.J., Chen, S., Fernandes, A.M., Tanamati, F.Y., Djabou-Fondjo, A.S.M., 2017. Effects of tillage options on soil physical properties and cassava-dry-matter partitioning. Field Crops Research 204, 191-198. https://doi.org/10.1016/j.fcr.2016.11.012
  • Githongo, M.W., Kiboi, M.N., Ngetich, F.K., Musafiri, C.M., Muriuki, A., Fliessbach, A., 2021. The effect of minimum tillage and animal manure on maize yields and soil organic carbon in sub‐Saharan Africa: A meta‐analysis. Environmental Challenges 5, 100340. https://doi.org/10.1016/j.envc.2021.100340
  • Gorucu, S., Khalilian, A., Han, Y.J., Dodd, R.B., Smith, B.R., 2006. An algorithm to determine the optimum tillage depth from soil penetrometer data in coastal plain soils. Applied Engineering in Agriculture 22(5), 625-631. https://doi.org/10.13031/2013.21993
  • Jackson, M.L., 2005. Soil chemical analysis: Advanced course. UW-Madison Libraries parallel press.
  • Jiang, Q., Madramootoo, C.A., Qi, Z., 2022. Soil carbon and nitrous oxide dynamics in corn (Zea mays L.) production under different nitrogen, tillage and residue management practices. Field Crops Research 277, 108421. https://doi.org/10.1016/j.fcr.2021.108421
  • Jiang, X.J., Liu, W., Wang, E., Zhou, T., Xin, P., 2017. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil and Tillage Research 166, 100-107. https://doi.org/10.1016/j.still.2016.10.011
  • Kahlon, M.S., Lal, R., Ann-Varughese, M., 2013. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research 126, 151-158. https://doi.org/10.1016/j.still.2012.08.001
  • Li, P., Gong, Y., Komatsuzaki, M., 2019. Temporal dynamics of 137Cs distribution in soil and soil-to-crop transfer factor under different tillage systems after the Fukushima Daiichi Nuclear Power Plant accident in Japan. Science of The Total Environment 697, 134060. https://doi.org/10.1016/j.scitotenv.2019.134060
  • Li, Y.-Y., Pang, H.-C., Han, X.-F., Yan, S.-W., Zhao, Y.-G., Jing, W., Zhen, Z., Zhang, J.-L., 2016. Buried straw layer and plastic mulching increase microflora diversity in salinized soil. Journal of Integrative Agriculture 15(7), 1602-1611. https://doi.org/10.1016/S2095-3119(15)61242-4
  • Li, Z., Zhang, Q., Qiao, Y., Du, K., Li, Z., Tian, C., Zhu, N., Leng, P., Yue, Z., Cheng, H., Li, F., 2022. Influence of straw mulch and no-tillage on soil respiration, its components and economic benefit in a Chinese wheat–maize cropping system. Global Ecology and Conservation 34, e02013. https://doi.org/10.1016/j.gecco.2022.e02013
  • Liebhard, G., Klik, A., Neugschwandtner, R.W., Nolz, R., 2022. Effects of tillage systems on soil water distribution, crop development, and evaporation and transpiration rates of soybean. Agricultural Water Management 269, 107719. https://doi.org/10.1016/j.agwat.2022.107719
  • Ma, R., Cai, C., Wang, J.-Y., Feng, J., Wu, X., Zhu, H., 2014. Effect of antecedent soil moisture on aggregate stability and splash erosion of krasnozem. Nongye Gongcheng Xuebao. Transactions of the Chinese Society of Agricultural Engineering 30, 95-103.
  • Mahadeen, A.Y., 2014. Effect of polyethylene black plastic mulch on growth and yield of two summer vegetable crops under rain-fed conditions under semi-arid region conditions. American Journal of Agricultural and Biological Sciences 9(2), 202. https://doi.org/10.3844/ajabssp.2014.202.207
  • Mamkagh, A.M.-A., 2009. Effect of tillage time and plastic mulch on growth and yield of okra (Abelmoschus esculentus) grown under rainfed conditions. International J. Agric. Biol. 11, 453-457.
  • Maul, J.E., Buyer, J.S., Lehman, R.M., Culman, S., Blackwood, C.B., Roberts, D.P., Zasada, I.A., Teasdale, J.R., 2014. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Applied Soil Ecology 77, 42-50. https://doi.org/10.1016/j.apsoil.2014.01.002
  • Mirzaei, M., Gorji Anari, M., Taghizadeh-Toosi, A., Zaman, M., Saronjic, N., Mohammed, S., Saronjic, N., Mohammed, S., Szabo, S., Caballero-Calvo, A., 2022. Soil nitrous oxide emissions following crop residues management in corn-wheat rotation under conventional and no-tillage systems. Air, Soil and Water Research 15, https://doi.org/10.1177/11786221221128789
  • Mirzaei, M., Gorji Anari, M., Saronjic, N., Sarkar, S., Kral, I., Gronauer, A., Mohammed, S., Caballero-Calvo, A., 2023. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types. Environmental Monitoring and Assessment 195(1), 171. https://doi.org/10.1007/s10661-022-10675-8
  • Mondal, S., Chakraborty, D., 2022. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma 405, 115443. https://doi.org/10.1016/j.geoderma.2021.115443
  • Naveen, G., Humphreys, E., Eberbach, P.L., Balwinder, S., Sudhir, Y., Kukal, S.S., 2021. Effects of tillage and mulch on soil evaporation in a dry seeded rice-wheat cropping system. Soil and Tillage Research 209, 104976. https://doi.org/10.1016/j.still.2021.104976
  • Ndzelu, B.S., Dou, S., Zhang, X., Zhang, Y., Ma, R., Liu, X., 2021. Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil and Tillage Research 213, 105090. https://doi.org/10.1016/j.still.2021.105090
  • Nzeyimana, I., Hartemink, A.E., Ritsema, C., Stroosnijder, L., Lwanga, E.H., Geissen, V., 2017. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 149, 43-51. https://doi.org/10.1016/j.catena.2016.08.034
  • Parlak, M., Everest, T., Tunçay, T., Caballero‐Calvo, A., Rodrigo‐Comino, J., 2022. Soil losses due to leek and groundnut root crop harvesting: An unstudied regional problem in Turkey. Land Degradation & Development 33(11), 1799-1809. https://doi.org/10.1002/ldr.4262
  • Qader, S.H., Utazi, C.E., Priyatikanto, R., Najmaddin, P., Hama-Ali, E.O., Khwarahm, N.R., Tatem, A.J., Dash, J., 2023. Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems. Science of The Total Environment 869, 161716. https://doi.org/10.1016/j.scitotenv.2023.161716
  • Rhoades, J.D., 1983. Soluble Salts. In A.L. Page (Ed.). Methods of Soil Analysis, Part 2., pp. 167-179. American Society of Agronomy https://doi.org/10.2134/agronmonogr9.2.2ed.c10
  • Rodrigo-Comino, J., 2018. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Science Reviews, 179, 436-447. https://doi.org/10.1016/j.earscirev.2018.02.014
  • Rodrigo-Comino, J., Senciales, J. M., Cerdà, A., Brevik, E. C., 2018. The multidisciplinary origin of soil geography: A review. Earth-Science Reviews, 177, 114-123. https://doi.org/10.1016/j.earscirev.2017.11.008
  • Rodrigo-Comino, J., López-Vicente, M., Kumar, V., Rodríguez-Seijo, A., Valkó, O., Rojas, C., Pourghasemi, H.R., Salvati, L., Bakr, N., Vaudour, E., Brevik, E.C., Radziemska, M., Pulido, M., Di Prima, S., Dondini, M., de Vries, W., Santos, E.S., Mendonça-Santos, M.L., Yu, Y., Panagos, 2020. Soil science challenges in a new era: a transdisciplinary overview of relevant topics. Air, Soil and Water Research 13, 1178622120977491. https://doi.org/10.1177/1178622120977491
  • Rodrigo-Comino, J., Caballero-Calvo, A., Salvati, L., Senciales-González, J. M., 2022. Sostenibilidad de los cultivos subtropicales: Claves para el manejo del suelo, el uso agrícola y la Ordenación del Territorio. Cuadernos Geográficos 61(1), 150-167. https://doi.org/10.30827/cuadgeo.v61i1.22284
  • Ruehlmann, J., Körschens, M., 2020. Soil particle density as affected by soil texture and soil organic matter: 2. Predicting the effect of the mineral composition of particle-size fractions. Geoderma 375, 114543. https://doi.org/10.1016/j.geoderma.2020.114543
  • SAS, I., 2013. Base SAS 9.4 procedures guide: statistical procedures. Cary, NC, USA: SAS Institute Inc.
  • Scarascia-Mugnozza, G., Sica, C., Russo, G., 2012. Plastic materials in European agriculture: actual use and perspectives. Journal of Agricultural Engineering 42(3), 15-28. https://doi.org/10.4081/jae.2011.3.15
  • Silva, M.F.d., Fernandes, M.M.H., Fernandes, C., Silva, A.M.R.d., Ferraudo, A.S., Coelho, A.P., 2021. Contribution of tillage systems and crop succession to soil structuring. Soil and Tillage Research 209, 104924. https://doi.org/10.1016/j.still.2020.104924
  • Staff, S.S., 2014. Keys to soil taxonomy. United States Department of Agriculture: Washington, DC, USA.
  • Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., Schaumann, G.E., 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment 550, 690-705. https://doi.org/10.1016/j.scitotenv.2016.01.153
  • Testa, R., Foderà, M., Di Trapani, A.M., Tudisca, S., Sgroi, F., 2015. Choice between alternative investments in agriculture: The role of organic farming to avoid the abandonment of rural areas. Ecological Engineering 83, 227-232. https://doi.org/10.1016/j.ecoleng.2015.06.021
  • Torppa, K.A., Taylor, A.R., 2022. Alternative combinations of tillage practices and crop rotations can foster earthworm density and bioturbation. Applied Soil Ecology 175, 104460. https://doi.org/10.1016/j.apsoil.2022.104460
  • Wang, J., Shi, X., Li, Z., Zhang, Y., Liu, Y., Peng, Y., 2021. Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China. Agricultural Water Management 253, 106935. https://doi.org/10.1016/j.agwat.2021.106935
  • Wang, Y., Xie, Z., Malhi, S.S., Vera, C.L., Zhang, Y., Wang, J., 2009. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agricultural Water Management 96(3), 374-382. https://doi.org/10.1016/j.agwat.2008.09.012
  • Xin, X., Zhang, J., Zhu, A., Zhang, C., 2016. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil and Tillage Research 156, 166-172. https://doi.org/10.1016/j.still.2015.10.012
  • Yang, H., Li, J., Wu, G., Huang, X., Fan, G., 2023. Maize straw mulching with no-tillage increases fertile spike and grain yield of dryland wheat by regulating root-soil interaction and nitrogen nutrition. Soil and Tillage Research 228, 105652. https://doi.org/10.1016/j.still.2023.105652
  • Ye, C., Guo, Z., Cai, C., Wang, J., Deng, J., 2017. Effect of water content, bulk density, and aggregate size on mechanical characteristics of Aquults soil blocks and aggregates from subtropical China. Journal of Soils and Sediments 17(1), 210-219. https://doi.org/10.1007/s11368-016-1480-8
  • Yin, W., Fan, Z., Hu, F., Fan, H., He, W., Zhao, C., Yu, A., Chai, Q., 2023. No-tillage with straw mulching promotes wheat production via regulating soil drying-wetting status and reducing soil-air temperature variation at arid regions. European Journal of Agronomy 145, 126778. https://doi.org/10.1016/j.eja.2023.126778
  • Zhang, T., Cai, G., Liu, S., Puppala, A.J., 2017. Investigation on thermal characteristics and prediction models of soils. International Journal of Heat and Mass Transfer 106, 1074-1086. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.084
  • Zhao, H., Xiong, Y.-C., Li, F.-M., Wang, R.-Y., Qiang, S.-C., Yao, T.-F., Mo, F., 2012. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agricultural Water Management 104, 68-78. https://doi.org/10.1016/j.agwat.2011.11.016
  • Zhao, J., Liu, Z., Lai, H., Yang, D., Li, X., 2022. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat–peanut rotation system. Journal of Environmental Management 306, 114468. https://doi.org/10.1016/j.jenvman.2022.114468
  • Zhao, X.-d., Qin, X.-r., Li, T.-l., Cao, H.-b., Xie, Y.-h., 2023. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2023.02.026
  • Zheng, F., Wu, X., Zhang, M., Liu, X., Song, X., Lu, J., Wang, B., Jan van Groenigen, K., Li, S., 2022. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil and Tillage Research 220, 105360. https://doi.org/10.1016/j.still.2022.105360
  • Zheng, K., Cheng, J., Xia, J., Liu, G., Xu, L., 2021. Effects of Soil Bulk Density and Moisture Content on the Physico-Mechanical Properties of Paddy Soil in Plough Layer. Water 13(16), 2290. https://doi.org/10.3390/w13162290