The effects of physical activity on white matter microstructure in children with overweight or obesityThe ActiveBrains randomized clinical trial

  1. Maria Rodriguez-Ayllon 1
  2. Juan Verdejo-Roman 1
  3. Alina Lesnovskaya 2
  4. Jose Mora-Gonzalez 1
  5. Patricio Solis-Urra 1
  6. Andrés Catena 1
  7. Kirk I. Erickson 2
  8. Francisco B. Ortega 1
  9. Irene Esteban-Cornejo 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 University of Pittsburgh
    info

    University of Pittsburgh

    Pittsburgh, Estados Unidos

    ROR https://ror.org/01an3r305

Revista:
International journal of clinical and health psychology

ISSN: 1697-2600

Año de publicación: 2024

Volumen: 24

Número: 1

Páginas: 111-120

Tipo: Artículo

DOI: 10.1016/J.IJCHP.2023.100426 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: International journal of clinical and health psychology

Objetivos de desarrollo sostenible

Resumen

Abstract Background Emerging research supports the idea that physical activity benefits brain development. However, the body of evidence focused on understanding the effects of physical activity on white matter microstructure during childhood is still in its infancy, and further well-designed randomized clinical trials are needed. Aim This study aimed: (i) to investigate the effects of a 20-week physical activity intervention on global white matter microstructure in children with overweight or obesity, and (ii) to explore whether the effect of physical activity on white matter microstructure is global or restricted to a particular set of white matter bundles. Methods In total, 109 children aged 8 to 11 years with overweight or obesity were randomized and allocated to either the physical activity program or the control group. Data were collected from November 2014 to June 2016, with diffusion tensor imaging (DTI) data processing and analyses conducted between June 2017 and November 2021. Images were pre-processed using the Functional Magnetic Resonance Imaging (MRI) of the Brain´s Software Library (FSL) and white matter properties were explored by probabilistic fiber tractography and tract-based spatial statistics (TBSS). Results Intention-to-treat analyses were performed for all children who completed the pre-test and post-test DTI assessment, with good quality DTI data (N = 89). Of them, 83 children (10.06±1.11 years, 39 % girls, intervention group=44) met the per-protocol criteria (attended at least 70 % of the recommended sessions). Our probabilistic fiber tractography analysis did not show any effects in terms of global and tract-specific fractional anisotropy (FA) and mean diffusivity (MD) in the per-protocol or intention-to-treat analyses. Additionally, we did not observe any effects on the voxel-wise DTI parameters (i.e., FA and MD) using the most restricted TBSS approach (i.e., per protocol analyses and p-corrected image with a statistical threshold of p < 0.05). In the intention-to-treat analysis, we found that our physical activity program had a borderline effect (p-corrected image with a statistical threshold of p < 0.1) on 7 different clusters, including a cluster in the corpus callosum. Conclusion We conclude that a 20-week physical activity intervention was not enough to induce changes in global and tract-specific white matter during childhood. The effects of physical activity on white matter microstructure could be restricted to local changes in several white matter tracts (e.g., the body of the corpus callosum). However, our results were not significant, and more interventions are needed to determine whether and how physical activity affects white matter microstructure during childhood.

Referencias bibliográficas

  • Andersson, J. L. R., Graham, M. S., Zsoldos, E., & Sotiropoulos, S. N. (2016). Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage, 141, 556–572. https://doi.org/10.1016/j.neuroimage.2016.06.058
  • Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019
  • Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 34(1), 144–155. https://doi.org/10.1016/j. neuroimage.2006.09.018
  • Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., Matthews, P. M., Brady, J. M., & Smith, S. M. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50(5), 1077–1088. https://doi.org/10.1002/mrm.10609
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. https://www.jstor.org/stable/2346101? seq=1#metadata_info_tab_contents.
  • Bervoets, L., & Massa, G. (2014). Defining morbid obesity in children based on BMI 40 at age 18 using the extended international (IOTF) cut-offs. Pediatric Obesity, 9(5), e94–e98. https://doi.org/10.1111/j.2047-6310.2014.00217.x
  • Bolhuis, K., Tiemeier, H., Jansen, P. R., Muetzel, R. L., Neumann, A., Hillegers, M. H. J., van den Akker, E. T. L., van Rossum, E. F. C., Jaddoe, V. W. V, Vernooij, M. W., White, T., & Kushner, S. A (2019). Interaction of schizophrenia polygenic risk and cortisol level on pre-adolescent brain structure. Psychoneuroendocrinology, 101, 295–303. https://doi.org/10.1016/j.psyneuen.2018.12.231
  • Cadenas-Sanchez, C., Mora-Gonzalez, J., Migueles, J. H., Martín-Matillas, M., Gomez-Vida, J., Escolano-Margarit, M. V., Maldonado, J., Enriquez, G. M., Pastor- Villaescusa, B., de Teresa, C., Navarrete, S., Lozano, R. M., de Dios Beas-Jimenez, J., Estevez-Lopez, F., Mena-Molina, A., Heras, M. J., Chillon, P., Campoy, C., Muñoz- Hernandez, V., … Ortega, F. B. (2016). An exercise-based randomized controlled trial on brain, cognition, physical health and mental health in overweight/obese children (ActiveBrains project): Rationale, design and methods. Contemporary Clinical Trials, 47, 315–324. https://doi.org/10.1016/j.cct.2016.02.007
  • Chaddock-Heyman, L., Erickson, K. I., Kienzler, C., Drollette, E., Raine, L., Kao, S.-C., Bensken, J., Weisshappel, R., Castelli, D. M., Hillman, C., & Kramer, A. (2018). Physical activity increases white matter microstructure in children. Frontiers in Neuroscience, 12, 950. https://doi.org/10.3389/FNINS.2018.00950
  • Chaddock-Heyman, L., Erickson, K. I., Voss, M. W., Knecht, A. M., Pontifex, M. B., Castelli, D. M., Hillman, C. H., & Kramer, A. F. (2013). The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Frontiers in Human Neuroscience, 7(March), 72. https://doi.org/10.3389/fnhum.2013.00072
  • Cole, T. J., & Lobstein, T. (2012). Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric Obesity, 7(4), 284–294. https://doi. org/10.1111/j.2047-6310.2012.00064.x
  • Daniell, H. (2012). Improved fronto-parietal white matter integrity in overweight children is associated with attendance in an after-school exercise program. 76 (October 2009), 211–220. https://doi.org/10.1007/s11103-011-9767-z.Plastid.
  • Davis, C. L., Tomporowski, P. D., Mcdowell, J. E., Austin, B. P., Miller, P. H., & Allison, J. D. (2011). Exercises improves executive function and achievement and alters brain activation in overweight children A randomized controlled trial. NIH, 30 (1), 91–98. https://doi.org/10.1037/a0021766.Exercise
  • de Groot, M., Ikram, M. A., Akoudad, S., Krestin, G. P., Hofman, A., van der Lugt, A., Niessen, W. J., & Vernooij, M. W. (2015). Tract-specific white matter degeneration in aging: The Rotterdam study. Alzheimer’s and Dementia, 11(3), 321–330. https://doi. org/10.1016/j.jalz.2014.06.011
  • Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., Macko, R., Marquez, D. X., Petruzzello, S. J., & Powell, K. E. (2019). Physical activity, cognition, and brain outcomes: A review of the 2018 physical activity guidelines. Medicine and Science in Sports and Exercise, 51(6), 1242–1251. https:// doi.org/10.1249/MSS.0000000000001936
  • Esteban-Cornejo, I., Rodriguez-Ayllon, M., Verdejo-Roman, J., Cadenas-Sanchez, C., Mora-Gonzalez, J., Chaddock-Heyman, L., Raine, L. B., Stillman, C. M., Kramer, A. F., Erickson, K. I., Catena, A., Ortega, F. B., & Hillman, C. H. (2019). Physical fitness, white matter volume and academic performance in children: Findings from the ActiveBrains and FITKids2 projects. Frontiers in Psychology, 10, 208. https://doi.org/10.3389/fpsyg.2019.00208
  • Fields, R. D. (2008). White matter matters. Scientific American, 298(3), 54–61. https:// doi.org/10.1038/SCIENTIFICAMERICAN0308-54
  • Giorgio, A., Watkins, K. E., Chadwick, M., James, S., Winmill, L., Douaud, G., De Stefano, N., Matthews, P. M., Smith, S. M., Johansen-Berg, H., & James, A. C. (2010). Longitudinal changes in grey and white matter during adolescence. NeuroImage, 49 (1), 94–103. https://doi.org/10.1016/j.neuroimage.2009.08.003
  • Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics, 5, 13. https:// doi.org/10.3389/fninf.2011.00013
  • Hofman, A., Rodriguez-Ayllon, M., Vernooij, M. W., Croll, P. H., Luik, A. I., Neumann, A., Niessen, W. J., Ikram, M. A., Voortman, T., & Muetzel, R. L. (2022). Physical activity levels and brain structure in middle-aged and older adults: A bidirectional longitudinal population-based study. Neurobiology of Aging. https://doi.org/ 10.1016/J.NEUROBIOLAGING.2022.10.002
  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. In NeuroImage, 62(2), 782–790. https://doi.org/10.1016/j. neuroimage.2011.09.015.
  • Jones, D. K., & Cercignani, M. (2010). Twenty-five pitfalls in the analysis of diffusion MRI data. NMR in Biomedicine, 23(7), 803–820. https://doi.org/10.1002/nbm.1543
  • Kohl, H. W., Craig, C. L., Lambert, E. V., Inoue, S., Alkandari, J. R., Leetongin, G., Kahlmeier, S., & Lancet Physical Activity Series Working Group. (2012). The pandemic of physical inactivity: Global action for public health. The Lancet, 380 (9838), 294–305. https://doi.org/10.1016/S0140-6736(12)60898-8
  • Krafft, C. E., Pierce, J. E., Schwarz, N. F., Chi, L., Weinberger, A. L., Schaeffer, D. J., Rodrigue, A. L., Camchong, J., Allison, J. D., Yanasak, N. E., Liu, T., Davis, C. L., & McDowell, J. E. (2014a). An eight month randomized controlled exercise intervention alters resting state synchrony in overweight children. Neuroscience, 256, 445–455. https://doi.org/10.1016/j.neuroscience.2013.09.052
  • Krafft, C. E., Schaeffer, D. J., Schwarz, N. F., Chi, L., Weinberger, A. L., Pierce, J. E., Rodrigue, A. L., Allison, J. D., Yanasak, N. E., Liu, T., Davis, C. L., & McDowell, J. E. (2014b). Improved frontoparietal white matter integrity in overweight children is associated with attendance at an after-school exercise program. Developmental Neuroscience, 36(1), 1–9. https://doi.org/10.1159/000356219
  • Lee, I.-M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T., & Lancet Physical Activity Series Working Group. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. The Lancet, 380(9838), 219–229. https://doi.org/10.1016/S0140- 6736(12)61031-9
  • Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 1336–1349. https://doi.org/10.1002/mrm.21890
  • Migueles, J. H., Cadenas-Sanchez, C., Lubans, D. R., Henriksson, P., Torres-Lopez, L. V., Rodriguez-Ayllon, M., … Ortega, F. B. (2023). Effects of an exercise program on cardiometabolic and mental health in children with overweight or obesity: a secondary analysis of a randomized clinical trial. JAMA Network Open, 6(7), Article e2324839. https://doi.org/10.1001/jamanetworkopen.2023.24839
  • Muetzel, R. L., Blanken, L. M. E., van der Ende, J., El Marroun, H., Shaw, P., Sudre, G., van der Lugt, A., Jaddoe, V. W. V., Verhulst, F. C., Tiemeier, H., & White, T. (2017). Tracking brain development and dimensional psychiatric symptoms in children: A longitudinal population-based neuroimaging study. American Journal of Psychiatry. https://doi.org/10.1176/appi.ajp.2017.16070813. appi.ajp.2017.1.
  • Mulder, T. A., Kocevska, D., Muetzel, R. L., Koopman-Verhoeff, M. E., Hillegers, M. H., White, T., & Tiemeier, H. (2019). Childhood sleep disturbances and white matter microstructure in preadolescence. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 60(11), 1242–1250. https://doi.org/10.1111/jcpp.13085
  • Naidoo, A., Naidoo, K., Yende-zuma, N., & Gengiah, T. N. (2014). An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity, 22(1), 232–242. https://doi.org/10.3851/IMP2701. Changes (Silver Spring, Md.).
  • Navas-Sanchez, F. J., Aleman-Gomez, Y., Sanchez-Gonzalez, J., Guzman-De-Villoria, J. A., Franco, C., Robles, O., Arango, C., & Desco, M. (2014). White matter microstructure correlates of mathematical giftedness and intelligence quotient. Human Brain Mapping, 35(6), 2619–2631. https://doi.org/10.1002/hbm.22355
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Oouchi, H., Yamada, K., Sakai, K., Kizu, O., Kubota, T., Ito, H., & Nishimura, T. (2007). Diffusion anisotropy measurement of brain white matter is affected by voxel size: Underestimation occurs in areas with crossing fibers. American Journal of Neuroradiology, 28(6), 1102–1106. https://doi.org/10.3174/ajnr.A0488
  • Ortega, F. B., Mora-Gonzalez, J., Cadenas-Sanchez, C., Esteban-Cornejo, I., Migueles, J. H., Solis-Urra, P., Verdejo-Roman, J., María Rodriguez-Ayllon, ;, Molina-Garcia, P., Ruiz, J. R., Martinez-Vizcaino, V., Hillman, C. H., Kirk, ;, Erickson, I., Kramer, A. F., Labayen, I., & Catena, A. (2022). Effects of an exercise program on brain health outcomes for children with overweight or obesity: The ActiveBrains randomized clinical trial. JAMA Network Open, 5(8). https://doi.org/ 10.1001/JAMANETWORKOPEN.2022.27893. e2227893–e2227893.
  • Pappas, D. (2006). ADHD rating scale-IV: Checklists, norms, and clinical interpretation. Journal of Psychoeducational Assessment, 24(2), 172–178. https://doi.org/10.1177/ 0734282905285792
  • Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., George, S. M., & Olson, R. D. (2018). The physical activity guidelines for Americans. JAMA - Journal of the American Medical Association, 320(19), 2020–2028. https:// doi.org/10.1001/jama.2018.14854
  • Rodriguez-Ayllon, M., Cadenas-Sanchez, C., Estevez-Lopez, F., Muñoz, N. E., Mora-Gonzalez, J., Migueles, J. H., Molina-García, P., Henriksson, H., Mena-Molina, A., Martínez-Vizcaíno, V., Catena, A., Lo¨f, M., Erickson, K. I., Lubans, D. R., Ortega, F. B., & Esteban-Cornejo, I. (2019). Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: A systematic review and meta-analysis. Sports Medicine. https://doi.org/10.1007/ s40279-019-01099-5
  • Rodriguez-Ayllon, M., Derks, I. P. M., van den Dries, M. A., Esteban-Cornejo, I., Labrecque, J. A., Yang-Huang, J., Raat, H., Vernooij, M. W., White, T., Ortega, F. B., Tiemeier, H., & Muetzel, R. L. (2020a). Associations of physical activity and screen time with white matter microstructure in children from the general population. NeuroImage, 205, Article 116258. https://doi.org/10.1016/j. neuroimage.2019.116258
  • Rodriguez-Ayllon, M., Esteban Cornejo, I., Verdejo-Roman, J., Muetzel, RL, Migueles, J. H., Mora-Gonzalez, J., … Ortega, F. B. (2020b). Physical activity, sedentary behavior and white matter microstructure in children with overweight or obesity. Medicine & Science in Sports & Exercise, 52(5), 1218–1226. https://doi.org/ 10.1249/MSS.0000000000002233
  • Schaeffer, D. J., Krafft, C. E., Schwarz, N. F., Chi, L., Rodrigue, A. L., Pierce, J. E., Allison, J. D., Yanasak, N. E., Liu, T., Davis, C. L., & McDowell, J. E. (2014). An 8- month exercise intervention alters frontotemporal white matter integrity in overweight children. Psychophysiology, 51(8), 728–733. https://doi.org/10.1111/ psyp.12227
  • Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study. Human Brain Mapping, 26(2), 139–147. https://doi. org/10.1002/hbm.20149
  • Schwartz, S., Maquet, P., & Frith, C. (2002). Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination. Proceedings of the National Academy of Sciences of the United States of America, 99(26), 17137–17142. https:// doi.org/10.1073/pnas.242414599
  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17 (3), 143–155. https://doi.org/10.1002/hbm.10062
  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi- subject diffusion data. NeuroImage, 31(4), 1487–1505. https://doi.org/10.1016/j. neuroimage.2006.02.024
  • Wang, S., Yin, H., Wang, X., Jia, Y., Wang, C., Wang, L., & Chen, L. (2019). Efficacy of different types of exercises on global cognition in adults with mild cognitive impairment: A network meta-analysis. In Aging clinical and experimental research, 31 pp. 1391–1400). Springer International Publishing. https://doi.org/10.1007/ s40520-019-01142-5
  • Yotsumoto, Y., Chang, L. H., Ni, R., Pierce, R., Andersen, G. J., Watanabe, T., & Sasaki, Y. (2014). White matter in the older brain is more plastic than in the younger brain. Nature Communications, 5. https://doi.org/10.1038/ncomms6504