Modelos inteligentes para la mejora de estimaciones y predicciones agrometeorológicas

  1. BELLIDO JIMÉNEZ, JUAN ANTONIO
Dirigida por:
  1. Javier Estévez Gualda Director/a
  2. Amanda Penélope García Marín Director/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 02 de junio de 2023

Tribunal:
  1. Carlos García-Legaz Martínez Presidente/a
  2. Eulalia Jadraque Gago Secretaria
  3. Antonio Eduardo de Barros Ruano Vocal

Tipo: Tesis

Resumen

1. Introducción o motivación de la tesis: La población mundial, en continuo crecimiento, alcanzará de forma estimada los 9,7 mil millones de habitantes en el 2050. Este incremento, combinado con el aumento en los estándares de vida y la situación de emergencia climática (aumento de la temperatura, intensificación del ciclo del agua, etc.) nos enfrentan al enorme desafío de gestionar de forma sostenible los cada vez más escasos recursos disponibles. El sector agrícola tiene que afrontar retos tan importantes como la mejora en la gestión de los recursos naturales, la reducción de la degradación medioambiental o la seguridad alimentaria y nutricional. Todo ello condicionado por la escasez de agua y las condiciones de aridez: factores limitantes en la producción de cultivos. Para garantizar una producción agrícola sostenible bajo estas condiciones, es necesario que todas las decisiones que se tomen estén basadas en el conocimiento, la innovación y la digitalización de la agricultura de forma que se garantice la resiliencia de los agroecosistemas, especialmente en entornos áridos, semi-áridos y secos sub-húmedos en los que el déficit de agua es estructural. Por todo esto, el presente trabajo se centra en la mejora de la precisión de los actuales modelos agrometeorológicos, aplicando técnicas de inteligencia artificial. Estos modelos pueden proporcionar estimaciones y predicciones precisas de variables clave como la precipitación, la radiación solar y la evapotranspiración de referencia. A partir de ellas, es posible favorecer estrategias agrícolas más sostenibles, gracias a la posibilidad de reducir el consumo de agua y energía, por ejemplo. Además, se han reducido el número de mediciones requeridas como parámetros de entrada para estos modelos, haciéndolos más accesibles y aplicables en áreas rurales y países en desarrollo que no pueden permitirse el alto costo de la instalación, calibración y mantenimiento de estaciones meteorológicas automáticas completas. Este enfoque puede ayudar a proporcionar información valiosa a los técnicos, agricultores, gestores y responsables políticos de la planificación hídrica y agraria en zonas clave. 2.Contenido de la investigación: Esta tesis doctoral ha desarrollado y validado nuevas metodologías basadas en inteligencia artificial que han ser vido para mejorar la precision de variables cruciales en al ámbito agrometeorológico: precipitación, radiación solar y evapotranspiración de referencia. En particular, se han modelado sistemas de predicción y rellenado de huecos de precipitación a diferentes escalas utilizando redes neuronales. También se han desarrollado modelos de estimación de radiación solar utilizando exclusivamente parámetros térmicos y validados en zonas con características climáticas similares a lugar de entrenamiento, sin necesidad de estar geográficamente en la misma región o país. Analógamente, se han desarrollado modelos de estimación y predicción de evapotranspiración de referencia a nivel local y regional utilizando también solamente datos de temperatura para todo el proceso: regionalización, entrenamiento y validación. Y finalmente, se ha creado una librería de Python de código abierto a nivel internacional (AgroML) que facilita el proceso de desarrollo y aplicación de modelos de inteligencia artificial, no solo enfocadas al sector agrometeorológico, sino también a cualquier modelo supervisado que mejore la toma de decisiones en otras áreas de interés. 3.Conclusión: Durante esta tesis doctoral se han desarrollado varias estrategias para superar las estimaciones y predicciones agrometeorológicas, enfocándose no solo en mejorar la precisión sino también en minimizar el número de parámetros necesarios. Así, solo se han evaluado enfoques basados en la temperatura, ya que la temperatura es la métrica más utilizada en las estaciones meteorológicas, además de ser la medida más barata y confiable, incluso cuando se mide con dispositivos de bajo coste. Debido a su importancia en sectores como la agronomía, la hidrología o el sector energético, entre otros, las variables agrometeorológicas modeladas han sido la precipitación, la radiación solar y la evapotranspiración de referencia En segundo lugar, se han probado diferentes modelos de aprendizaje automático en diferentes escenarios, como MLP, ELM, SVM, RF y XGBoost, entre otros. Existen diferencias en el rendimiento dependiendo de la naturaleza de la variable objetivo (precipitación, radiación solar y evapotranspiración de referencia) y otros factores como el índice de aridez o la proximidad al mar. En términos generales, se podría afirmar que MLP parece obtener los resultados más precisos para las estimaciones de precipitación, SVM generalmente supera a MLP al estimar la radiación solar y MLP y ELM son los más adecuados para predecir y pronosticar ET0. Vale la pena destacar que modelos como RF, XGBoost y modelos basados en transformaciones, a pesar de tener un coste computacional muy alto, no mejoran el rendimiento del resto de los modelos, obteniendo incluso peores resultados en algunos casos. En tercer lugar, se han evaluado diferentes enfoques en términos de entrenamiento. Por un lado, un algoritmo de calibración local obtiene los mejores resultados en general ya que los modelos se entrenan en las mismas condiciones climáticas y en el mismo sitio. Esto puede dar lugar al problema de falta de generalización en los modelos, ya que estos modelos están diseñados para ser utilizados en una ubicación específica. Sin embargo, su implementación en ubicaciones nuevas y no vistas con características geoclimáticas similares aún puede producir estimaciones precisas . Por otro lado, se evaluó un enfoque regional en la región de Andalucía, agrupando las estaciones meteorológicas según las características multifractales de los valores de DTR (dos regiones principales, sitios del interior - región 1 y sitios costeros - región 2). Los resultados destacan que la utilización de un enfoque regional mejora significativamente el rendimiento de las metodologías empíricas y, a pesar de ser generalmente menos eficiente, puede superar a los modelos de calibración local en algunos casos. 4. Bibliografía: [1] IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambirdge, UK and New York, NY, USA: 2022. [2] Hervás-Gámez C, Delgado-Ramos F. Drought Management Planning Policy: From Europe to Spain. Sustainability 2019, Vol 11, Page 1862 2019;11:1862. https://doi.org/10.3390/SU11071862. [3] Haile GG, Tang Q, Hosseini-Moghari SM, Liu X, Gebremicael TG, Leng G, et al. Projected Impacts of Climate Change on Drought Patterns Over East Africa. Earths Future 2020;8:e2020EF001502. https://doi.org/10.1029/2020EF001502. [4] FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable. Rome: 2022. [5] Jager-Waldau A, Adinolfi G, Batlle A, Braun M, Bucher C, Detollenaere A, et al. Electricity produced from photovoltaic systems in apartment buildings and self-consumption¿: Comparison of the situation in various IEA PVPS countries. Conference Record of the IEEE Photovoltaic Specialists Conference 2019:1701¿10. https://doi.org/10.1109/PVSC40753.2019.8980484. [6] Singh GK. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013;53:1¿13. https://doi.org/10.1016/J.ENERGY.2013.02.057. [7] Jäger-Waldau A. Snapshot of photovoltaics ¿ February 2022. EPJ Photovoltaics 2022;13. https://doi.org/10.1051/EPJPV/2022010. [8] Chatzipanagi A, Jaeger-Waldau A, Cleret DLC, Letout S, Latunussa C, Mountraki A, et al. Clean Energy Technology Observatory: Photovoltaics in the European Union ¿ 2022 Status Report on Technology Development, Trends, Value Chains and Markets. Luxrmbourg: 2022. https://doi.org/10.2760/812610. [9] Strigaro D, Cannata M, Antonovic M. Boosting a Weather Monitoring System in Low Income Economies Using Open and Non-Conventional Systems: Data Quality Analysis. Sensors 2019, Vol 19, Page 1185 2019;19:1185. https://doi.org/10.3390/S19051185. [10] Nsabagwa M, Byamukama M, Kondela E, Otim JS. Towards a robust and affordable Automatic Weather Station. Dev Eng 2019;4:100040. https://doi.org/10.1016/J.DEVENG.2018.100040. [11] Estévez J, Bellido-Jiménez JA, Liu X, García-Marín AP. Monthly precipitation forecasts using wavelet neural networks models in a semiarid environment. Water (Switzerland) 2020;12. https://doi.org/10.3390/w12071909. [12] Sanikhani H, Kisi O, Maroufpoor E, Yaseen ZM. Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theor Appl Climatol 2019;135:449¿62. https://doi.org/10.1007/S00704-018-2390-Z/FIGURES/8. [13] Abraha MG, Savage MJ. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agric For Meteorol 2008;148:401¿16. https://doi.org/https://doi.org/10.1016/j.agrformet.2007.10.001. [14] IEC 60751. Industrial platinum resistance thermometers and platinum temperature sensors. International Electrotechnical Commission 2022. [15] Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations; 1998. [16] Stein JS, Hansen CW, Reno MJ. Global horizontal irradiance clear sky models¿: implementation and analysis. 2012. https://doi.org/10.2172/1039404. [17] Angstrom A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society 1924;50:121¿6. https://doi.org/10.1002/QJ.49705021008. [18] Estévez J, Gavilán P, Berengena J. Sensitivity analysis of a Penman¿Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol Process 2009;23:3342¿53. https://doi.org/10.1002/HYP.7439. [19] Gavilán P, Estévez J, Berengena J. Comparison of Standardized Reference Evapotranspiration Equations in Southern Spain. Journal of Irrigation and Drainage Engineering 2008;134:1¿12. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:1(1). [20] Martí P, González-Altozano P, López-Urrea R, Mancha LA, Shiri J. Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agric Water Manag 2015;149:81¿90. https://doi.org/10.1016/J.AGWAT.2014.10.028. [21] Shiri J. Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agric Water Manag 2017;188:101¿14. https://doi.org/10.1016/J.AGWAT.2017.04.009. [22] Estévez J, Padilla FL, Gavilán P. Evaluation and Regional Calibration of Solar Radiation Prediction Models in Southern Spain. Journal of Irrigation and Drainage Engineering 2012;138:868¿79. [23] Hargreaves GH, Samani ZA. Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division 1982;108:225¿30. https://doi.org/10.1061/JRCEA4.0001390. [24] Bristow KL, Campbell GS. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol 1984;31:159¿66. https://doi.org/10.1016/0168-1923(84)90017-0. [25] Ravazzani G, Corbari C, Morella S, Gianoli P, Mancini M. Modified Hargreaves-Samani Equation for the Assessment of Reference Evapotranspiration in Alpine River Basins. Journal of Irrigation and Drainage Engineering 2012;138:592¿9. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453. [26] Cobaner M, Citakoglu H, Haktanir T, Kisi O. Modifying Hargreaves-Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey. Hydrology Research 2017;48:480¿97. https://doi.org/10.2166/nh.2016.217. [27] Luo Y, Chang X, Peng S, Khan S, Wang W, Zheng Q, et al. Short-term forecasting of daily reference evapotranspiration using the Hargreaves¿Samani model and temperature forecasts. Agric Water Manag 2014;136:42¿51. https://doi.org/10.1016/J.AGWAT.2014.01.006. [28] Quej VH, Almorox J, Arnaldo JA, Moratiel R. Evaluation of Temperature-Based Methods for the Estimation of Reference Evapotranspiration in the Yucatán Peninsula, Mexico. J Hydrol Eng 2018;24:05018029. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001747. [29] Gavilán P, Lorite IJ, Tornero S, Berengena J. Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric Water Manag 2006;81:257¿81. https://doi.org/10.1016/J.AGWAT.2005.05.001. [30] Maestre-Valero JF, Martínez-Álvarez V, González-Real MM. Regionalization of the Hargreaves coefficient to estimate long-term reference evapotranspiration series in SE Spain. Spanish Journal of Agricultural Research 2013;11:1137¿52. https://doi.org/10.5424/SJAR/2013114-3869. [31] Estévez J, Gavilán P, Giráldez J V. Guidelines on validation procedures for meteorological data from automatic weather stations. J Hydrol (Amst) 2011;402:144¿54. https://doi.org/10.1016/J.JHYDROL.2011.02.031. [32] Meek DW, Hatfield JL. Data quality checking for single station meteorological databases. Agric For Meteorol 1994;69:85¿109. https://doi.org/10.1016/0168-1923(94)90083-3. [33] Zhao L, Zhao X, Zhou H, Wang X, Xing X. Prediction model for daily reference crop evapotranspiration based on hybrid algorithm and principal components analysis in Southwest China. Comput Electron Agric 2021;190:106424. https://doi.org/10.1016/J.COMPAG.2021.106424. [34] Bellido-Jiménez JA, Estévez J, García-Marín AP. Automation of the features selection process to improve temperature-based solar radiation models in Southern Spain. 8th International Conference on Time Series and Forecasting (ITISE 2022), Gran Canaria: 2022. [35] Fraihat H, Almbaideen AA, Al-Odienat A, Al-Naami B, De Fazio R, Visconti P. Solar Radiation Forecasting by Pearson Correlation Using LSTm Neural Network and ANFIS Method: Application in the West-Central Jordan. Future Internet 2022, Vol 14, Page 79 2022;14:79. https://doi.org/10.3390/FI14030079. [36] Goci¿ M, Motamedi S, Shamshirband S, Petkovi¿ D, Ch S, Hashim R, et al. Soft computing approaches for forecasting reference evapotranspiration. Comput Electron Agric 2015;113:164¿73. https://doi.org/10.1016/J.COMPAG.2015.02.010. [37] Rosenblatt F. Perceptron Simulation Experiments. Proceedings of the IRE 1960;48:301¿9. https://doi.org/10.1109/JRPROC.1960.287598. [38] Patel D, Patel S, Patel P, Shah M. Solar radiation and solar energy estimation using ANN and Fuzzy logic concept: A comprehensive and systematic study. Environmental Science and Pollution Research 2022;29:32428¿42. https://doi.org/10.1007/S11356-022-19185-Z/TABLES/4. [39] Antonopoulos VZ, Papamichail DM, Aschonitis VG, Antonopoulos A V. Solar radiation estimation methods using ANN and empirical models. Comput Electron Agric 2019;160:160¿7. https://doi.org/10.1016/J.COMPAG.2019.03.022. [40] Bellido-Jiménez JA, Estévez Gualda J, García-Marín AP. Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions. Appl Energy 2021;298. https://doi.org/10.1016/j.apenergy.2021.117211. [41] Bellido¿jiménez JA, Gualda JE, García¿marín AP. Assessing machine learning models for gap filling daily rainfall series in a semiarid region of spain. Atmosphere (Basel) 2021;12. https://doi.org/10.3390/atmos12091158. [42] Parviz L, Rasouli K. Development of Precipitation Forecast Model Based on Artificial Intelligence and Subseasonal Clustering. J Hydrol Eng 2019;24:04019053. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001862. [43] Ghazvinian H, Bahrami H, Ghazvinian H, Heddam S. Simulation of Monthly Precipitation in Semnan City Using ANN Artificial Intelligence Model. Journal of Soft Computing in Civil Engineering 2020;4:36¿46. https://doi.org/10.22115/SCCE.2020.242813.1251. [44] Ghazvinian M, Zhang Y, Seo DJ, He M, Fernando N. A novel hybrid artificial neural network - Parametric scheme for postprocessing medium-range precipitation forecasts. Adv Water Resour 2021;151:103907. https://doi.org/10.1016/J.ADVWATRES.2021.103907. [45] Bellido-Jiménez JA, Estévez J, García-Marín AP. New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agric Water Manag 2021;245. https://doi.org/10.1016/j.agwat.2020.106558. [46] Bellido-Jiménez JA, Estévez J, García-Marín AP. A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain. Agric Water Manag 2022;274. https://doi.org/10.1016/j.agwat.2022.107955. [47] Bellido-Jiménez JA, Estévez J, Vanschoren J, García-Marín AP. AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models. Agronomy 2022;12. https://doi.org/10.3390/agronomy12030656. [48] Achite M, Jehanzaib M, Sattari MT, Toubal AK, Elshaboury N, Wa¿¿ga A, et al. Modern Techniques to Modeling Reference Evapotranspiration in a Semiarid Area Based on ANN and GEP Models. Water 2022, Vol 14, Page 1210 2022;14:1210. https://doi.org/10.3390/W14081210. [49] Ferreira LB, da Cunha FF, de Oliveira RA, Fernandes Filho EI. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM ¿ A new approach. J Hydrol (Amst) 2019;572:556¿70. https://doi.org/10.1016/J.JHYDROL.2019.03.028. [50] Ferreira LB, da Cunha FF. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric Water Manag 2020;234:106113. https://doi.org/10.1016/J.AGWAT.2020.106113. [51] Ferreira LB, da Cunha FF. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput Electron Agric 2020;178:105728. https://doi.org/10.1016/J.COMPAG.2020.105728. [52] Huang G Bin, Zhu QY, Siew CK. Extreme learning machine: A new learning scheme of feedforward neural networks. IEEE International Conference on Neural Networks - Conference Proceedings 2004;2:985¿90. https://doi.org/10.1109/IJCNN.2004.1380068. [53] Huang G Bin, Babri HA. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 1998;9:224¿9. https://doi.org/10.1109/72.655045. [54] Zhang H, Zhang S, Yin Y. Online sequential ELM algorithm with forgetting factor for real applications. Neurocomputing 2017;261:144¿52. https://doi.org/10.1016/J.NEUCOM.2016.09.121. [55] Mateo F, Carrasco JJ, Millán-Giraldo M, Sellami A, Escandell-Montero P, Martínez-Martínez JM, et al. Temperature Forecast in Buildings Using Machine Learning Techniques n.d. [56] Dash Y, Mishra SK, Panigrahi BK. Rainfall prediction of a maritime state (Kerala), India using SLFN and ELM techniques. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017 2018;2018-January:1714¿8. https://doi.org/10.1109/ICICICT1.2017.8342829. [57] Zhang X, Zhao D, Wang T, Wu X, Duan B. A novel rainfall prediction model based on CEEMDAN-PSO-ELM coupled model. Water Supply 2022;22:4531¿43. https://doi.org/10.2166/WS.2022.115. [58] Zhu B, Feng Y, Gong D, Jiang S, Zhao L, Cui N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput Electron Agric 2020;173:105430. https://doi.org/10.1016/J.COMPAG.2020.105430. [59] Wu L, Zhou H, Ma X, Fan J, Zhang F. Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: Application in contrasting climates of China. J Hydrol (Amst) 2019;577:123960. https://doi.org/10.1016/J.JHYDROL.2019.123960. [60] Fan J, Yue W, Wu L, Zhang F, Cai H, Wang X, et al. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric For Meteorol 2018;263:225¿41. https://doi.org/10.1016/J.AGRFORMET.2018.08.019. [61] Feng Y, Cui N, Zhao L, Hu X, Gong D. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. J Hydrol (Amst) 2016;536:376¿83. https://doi.org/10.1016/J.JHYDROL.2016.02.053. [62] Feng Y, Hao W, Li H, Cui N, Gong D, Gao L. Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renewable and Sustainable Energy Reviews 2020;118:109393. https://doi.org/10.1016/J.RSER.2019.109393. [63] Shamshirband S, Mohammadi K, Yee PL, Petkovi¿ D, Mostafaeipour A. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renewable and Sustainable Energy Reviews 2015;52:1031¿42. https://doi.org/10.1016/J.RSER.2015.07.173. [64] Karaman ÖA, Tany¿ld¿z¿ A¿¿r T, Arsel ¿. Estimation of solar radiation using modern methods. Alexandria Engineering Journal 2021;60:2447¿55. https://doi.org/10.1016/J.AEJ.2020.12.048. [65] Vapnik V. The Nature of Statistical Learning Theory. vol. 8, 2000, p. 1¿15. https://doi.org/10.1007/978-1-4757-3264-1_1. [66] Fan M, Sharma A. Design and implementation of construction cost prediction model based on SVM and LSSVM in industries 4.0. International Journal of Intelligent Computing and Cybernetics 2020;14:145¿57. https://doi.org/10.1108/IJICC-10-2020-0142/FULL/XML. [67] Otchere DA, Arbi Ganat TO, Gholami R, Ridha S. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models. J Pet Sci Eng 2021;200:108182. https://doi.org/10.1016/J.PETROL.2020.108182. [68] Kurani A, Doshi P, Vakharia A, Shah M. A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting. Annals of Data Science 2023;10:183¿208. https://doi.org/10.1007/S40745-021-00344-X/TABLES/2. [69] Wang H, Hu D. Comparison of SVM and LS-SVM for regression. Proceedings of 2005 International Conference on Neural Networks and Brain Proceedings, ICNNB¿05 2005;1:279¿83. https://doi.org/10.1109/ICNNB.2005.1614615. [70] Hussein E, Ghaziasgar M, Thron C. Regional rainfall prediction using support vector machine classification of large-scale precipitation maps. Proceedings of 2020 23rd International Conference on Information Fusion, FUSION 2020 2020. https://doi.org/10.23919/FUSION45008.2020.9190285. [71] Wang Y, Liu J, Li R, Suo X, Lu EH. Medium and Long-term Precipitation Prediction Using Wavelet Decomposition-prediction-reconstruction Model. Water Resources Management 2022;36:971¿87. https://doi.org/10.1007/S11269-022-03063-X/TABLES/2. [72] Fan J, Wu L, Ma X, Zhou H, Zhang F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew Energy 2020;145:2034¿45. https://doi.org/10.1016/J.RENENE.2019.07.104. [73] Álvarez-Alvarado JM, Ríos-Moreno JG, Obregón-Biosca SA, Ronquillo-Lomelí G, Ventura-Ramos E, Trejo-Perea M. Hybrid Techniques to Predict Solar Radiation Using Support Vector Machine and Search Optimization Algorithms: A Review. Applied Sciences 2021, Vol 11, Page 1044 2021;11:1044. https://doi.org/10.3390/APP11031044. [74] Guermoui M, Gairaa K, Boland J, Arrif T. A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study. Journal of Solar Energy Engineering, Transactions of the ASME 2021;143. https://doi.org/10.1115/1.4047852/1085484. [75] Ehteram M, Singh VP, Ferdowsi A, Mousavi SF, Farzin S, Karami H, et al. An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. PLoS One 2019;14:e0217499. https://doi.org/10.1371/JOURNAL.PONE.0217499. [76] Chia MY, Huang YF, Koo CH. Support vector machine enhanced empirical reference evapotranspiration estimation with limited meteorological parameters. Comput Electron Agric 2020;175:105577. https://doi.org/10.1016/J.COMPAG.2020.105577. [77] Ferreira LB, da Cunha FF, de Oliveira RA, Fernandes Filho EI. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM ¿ A new approach. J Hydrol (Amst) 2019;572:556¿70. https://doi.org/10.1016/J.JHYDROL.2019.03.028. [78] Weerts HJP, Mueller AC, Vanschoren J. Importance of Tuning Hyperparameters of Machine Learning Algorithms 2020. [79] Nourani V, Elkiran G, Abdullahi J. Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements. J Hydrol (Amst) 2019;577:123958. https://doi.org/10.1016/J.JHYDROL.2019.123958. [80] Fan J, Yue W, Wu L, Zhang F, Cai H, Wang X, et al. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric For Meteorol 2018;263:225¿41. https://doi.org/10.1016/J.AGRFORMET.2018.08.019. [81] Parker WS. Ensemble modeling, uncertainty and robust predictions. Wiley Interdiscip Rev Clim Change 2013;4:213¿23. https://doi.org/10.1002/WCC.220. [82] Ganaie MA, Hu M, Malik AK, Tanveer M, Suganthan PN. Ensemble deep learning: A review. Eng Appl Artif Intell 2022;115:105151. https://doi.org/10.1016/J.ENGAPPAI.2022.105151. [83] Nourani V, Elkiran G, Abdullahi J. Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements. J Hydrol (Amst) 2019;577:123958. https://doi.org/10.1016/J.JHYDROL.2019.123958. [84] Ferreira LB, da Cunha FF. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric Water Manag 2020;234:106113. https://doi.org/10.1016/J.AGWAT.2020.106113. [85] Liashchynskyi P, Liashchynskyi P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS 2019. https://doi.org/10.48550/arxiv.1912.06059. [86] Bergstra J, Ca JB, Ca YB. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 2012;13:281¿305. [87] Borji A, Itti L. Bayesian optimization explains human active search. Adv Neural Inf Process Syst 2013;26. [88] Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE 2016;104:148¿75. https://doi.org/10.1109/JPROC.2015.2494218. [89] Hutter F, Kotthoff L, Vanschoren J. Automated Machine Learning. vol. 1. Springer International Publishing; 2019. https://doi.org/10.1007/978-3-030-05318-5.