Aplicación de la ingeniería tisular en cirugía pediátrica

  1. Botía Martínez, Carmen 1
  2. Fernández Valadés, Ricardo 1
  3. Alaminos Mingorance, Miguel 2
  1. 1 Hospital Universitario Virgen de las Nieves (Granada)
  2. 2 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Actualidad médica

ISSN: 0365-7965

Año de publicación: 2023

Tomo: 108

Número: 817

Páginas: 157-165

Tipo: Artículo

DOI: 10.15568/AM.2023.817.REV01 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Actualidad médica

Resumen

El objetivo del presente trabajo es realizar una revisión del estado actual de la utilización de la ingeniería tisular en el ámbito de la cirugía pediátrica. Se realiza búsqueda de artículos en PubMed con los términos “Pediatric Surgery AND Tissue Engineering”. Se seleccionan todos aquellos artículos que incluyan en el nombre de la revista y/o del artículo alguno de los siguientes términos: “bioengineered”, “engineering”, “pediatric”, “children” “pediatric surgery”. Además de aquellos artículos resultado de esta misma búsqueda que, a nuestro criterio, deberían ser incluidos en nuestra revisión por tratar igualmente temas relacionados con la ingeniería tisular aplicada a disciplinas que forman parte de la tarea asistencial diaria de un cirujano pediátrico. Se obtuvieron 178 artículos. Tras realizar una primera revisión, eliminamos aquellos referentes a las aplicaciones de la ingeniería tisular en cirugía cardiovascular, traumatología, odontología y otorrinolaringología, por tratarse de especialidades no comprendidas dentro de la cirugía pediátrica en nuestro ámbito. Finalmente se revisaron 117 artículos distribuidos de la siguiente manera: 36 sobre el área de cirugía general (6 revisiones bibliográficas, 30 experimentales), 26 cirugía plástica (3 ensayos clínicos, 15 experimentales, 8 revisiones bibliográficas), 33 urología (26 experimentales, 7 revisiones bibliográficas), 22 fisura labiopalatina (1 ensayo clínico, 13 experimentales, 8 revisiones bibliográficas). Son múltiples los trabajos relacionados con la ingeniería tisular y su aplicación a la cirugía pediátrica y, aunque en el panorama teórico, la ingeniería tisular promete ser una alternativa terapéutica esperanzadora en muchas patologías comprendidas dentro de esta especialidad, y siendo múltiples los estudios experimentales que sugieren una esperanzadora aplicación en la clínica, son pocos los trabajos que tratan de su aplicación real en pacientes pediátricos.

Referencias bibliográficas

  • Abbas TO, Ali TA, Uddin S. Urine as a Main Effector in Urological Tissue Engineering—A Double-Edged Sword. Cells. 2020;9(3):538. https://www.mdpi.com/2073-4409/9/3/538
  • Abdel-Sayed P, Hirt-Burri N, De Buys Roessingh A, Raffoul W, Applegate LA. Evolution of biological bandages as first cover for burn patients. Adv wound care. 2019;8(11):555–64.
  • Alaminos M, Martin-Piedra MA, Alfonso-Rodriguez CA, Zapater A, Durand-Herrera D, Chato-Astrain J, et al. Effective use of mesenchymal stem cells in human skin substitutes generated by tissue engineering. Eur Cells Mater. 2019;37:233–49.
  • Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.
  • Barbagli G, Heidenreich A, Zugor V, Karapanos L, Lazzeri M. Urothelial or oral mucosa cells for tissue-engineered urethroplasty: A critical revision of the clinical outcome. Asian J Urol. 2020;7(1):18–23. https://linkinghub.elsevier.com/retrieve/pii/S2214388219300505
  • Bichara DA, O’Sullivan N-A, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, et al. The Tissue-Engineered Auricle: Past, Present, and Future. Tissue Eng Part B Rev. 2012;18(1):51–61. https://www.liebertpub.com/doi/10.1089/ten.teb.2011.0326
  • Bonilla A. Pediatric Microtia Reconstruction with Autologous Rib. Facial Plast Surg Clin North Am. 2018;26(1):57–68. https://linkinghub.elsevier.com/retrieve/pii/S1064740617301177
  • Brett E, Tevlin R, McArdle A, Seo EY, Chan CKF, Wan DC, et al. Human Adipose‐Derived Stromal Cell Isolation Methods and Use in Osteogenic and Adipogenic In Vivo Applications. Curr Protoc Stem Cell Biol. 2017;43(1):2H.1.1-2H.1.15. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpsc.41
  • Carriel V, Garzón I, Jiménez JM, Oliveira ACX, Arias-Santiago S, Campos A, et al. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells Tissues Organs. 2012;196(1):1–12.
  • Díaz-Moreno E, Durand-Herrera D, Carriel V, Martín-Piedra M-Á, Sánchez-Quevedo M-C, Garzón I, et al. Evaluation of freeze-drying and cryopreservation protocols for long-term storage of biomaterials based on decellularized intestine. J Biomed Mater Res Part B Appl Biomater. 2018;106(2):488–500. http://doi.wiley.com/10.1002/jbm.b.33861
  • Estrada Mira S, Morales Castro CA, Chams Anturi A, Arango Rave M, Restrepo Munera LM. Use of the extracellular matrix from the porcine esophagus as a graft for bladder enlargement. J Pediatr Urol. 2019;15(5):531–45.
  • Falke G., Atala A. Reconstrucción de tejidos y órganos utilizando ingeniería tisular. Arch.argent.pediatr. 2000;98(2):103-1.
  • Fan C, Pek CH, Por YC, Lim GJS. Biobrane dressing for paediatric burns in singapore: A retrospective review. Vol. 59, Singapore Medical Journal. Singapore Medical Association; 2018;59(7):360-65
  • Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: bladder augmentation. J Pediatr Surg. 1998;33(1):7–12.
  • Garzon I, Chato-Astrain J, Campos F, Fernandez-Valades R, Sanchez-Montesinos I, Campos A, et al. Expanded Differentiation Capability of Human Wharton’s Jelly Stem Cells Toward Pluripotency: A Systematic Review. Tissue Eng Part B Rev. 2020;0(0). https://www.liebertpub.com/doi/10.1089/ten.teb.2019.0257
  • Horst M, Eberli D, Gobet R, Salemi S. Tissue Engineering in Pediatric Bladder Reconstruction—The Road to Success. Front Pediatr. 2019;7:91. https://www.frontiersin.org/article/10.3389/fped.2019.00091/full
  • Jackson WM, Nesti LJ, Tuan RS. Concise Review: Clinical Translation of Wound Healing Therapies Based on Mesenchymal Stem Cells. Stem Cells Transl Med. 2012;1(1):44–50.
  • Jahanbin A, Rashed R, Alamdari DH, Koohestanian N, Ezzati A, Kazemian M, et al. Success of Maxillary Alveolar Defect Repair in Rats Using Osteoblast-Differentiated Human Deciduous Dental Pulp Stem Cells. J Oral Maxillofac Surg. 2016;74(4):829.e1-829.e9. https://linkinghub.elsevier.com/retrieve/pii/S0278239115016560
  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–9.
  • Kitano K, Schwartz DM, Zhou H, Gilpin SE, Wojtkiewicz GR, Ren X, et al. Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nat Commun. 2017;8(1):765–77. http://www.nature.com/articles/s41467-017-00779-y
  • Klar AS, Güven S, Zimoch J, Zapiórkowska NA, Biedermann T, Böttcher-Haberzeth S, et al. Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatr Surg Int. 2016;32(1):17–27. http://link.springer.com/10.1007/s00383-015-3808-7
  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.
  • Liceras-Liceras E, Garzón I, España-López A, Oliveira ACX, García-Gómez M, Martín-Piedra MÁ, et al. Generation of a bioengineered autologous bone substitute for palate repair: an in vivo study in laboratory animals. J Tissue Eng Regen Med. 2017;11(6):1907–14.
  • Liu JS, Bury MI, Fuller NJ, Sturm RM, Ahmad N, Sharma AK. Bone Marrow Stem/Progenitor Cells Attenuate the Inflammatory Milieu Following Substitution Urethroplasty. Sci Rep. 2016;6(1):35638. http://www.nature.com/articles/srep35638
  • Liu Y, Cromeens BP, Wang Y, Fisher K, Johnson J, Chakroff J, et al. Comparison of different in vivo incubation sites to produce tissue-engineered small intestine. Tissue Eng – Part A. 2018;24(13–14):1138–47.
  • Liu Y, Nelson T, Chakroff J, Cromeens B, Johnson J, Lannutti J, et al. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine. J Biomed Mater Res. 2019;107(3):750–60.
  • Loretelli C, Ben Nasr M, Giatsidis G, Bassi R, Lancerotto L, D’Addio F, et al. Embryonic stem cell extracts improve wound healing in diabetic mice. Acta Diabetol. 2020;57(7):883–90. http://link.springer.com/10.1007/s00592-020-01500-0
  • Loskill P, Huebsch N. Engineering Tissues from Induced Pluripotent Stem Cells. Tissue Eng . 2019;25(9–10):707–10.
  • Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E. Bioengineering: Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med. 2014;6(221):221ra14-221ra14. https://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.3006894
  • Martin LY, Ladd MR, Werts A, Sodhi CP, March JC, Hackam DJ. Tissue engineering for the treatment of short bowel syndrome in children. Pediatr Res. 2018;83(1–2):249–57. http://www.nature.com/articles/pr2017234
  • Martín-del-Campo M, Rosales-Ibañez R, Rojo L. Biomaterials for Cleft Lip and Palate Regeneration. Int J Mol Sci. 2019;20(9):2176. https://www.mdpi.com/1422-0067/20/9/2176
  • Martín-Piedra MA, Alaminos · M, Fernández-Valadés-Gámez · R, España-López · A, Liceras-Liceras · E, Sánchez-Montesinos · I, et al. Development of a multilayered palate substitute in rabbits: a histochemical ex vivo and in vivo analysis. Histochem Cell Biol. 2017;147:377–88.
  • Mazzone L, Moehrlen U, Ochsenbein‐Kölble N, Pontiggia L, Biedermann T, Reichmann E, et al. Bioengineering and in utero transplantation of fetal skin in the sheep model: A crucial step towards clinical application in human fetal spina bifida repair. J Tissue Eng Regen Med. 2020;14(1):58–65. https://onlinelibrary.wiley.com/doi/abs/10.1002/term.2963
  • Mossaad A, El Badry T, Abdelrahman M, Abd Elazeem A, Ghanem W, Hassan S, et al. Alveolar Cleft Reconstruction Using Different Grafting Techniques. Maced J Med Sci. 2019;7(8):1369–73. https://spiroski.migration.publicknowledgeproject.org/index.php/mjms/article/view/oamjms.2019.236
  • Niu Y, Liu G, Chen C, Fu M, Fu W, Zhao Z, et al. Urethral reconstruction using an amphiphilic tissue-engineered autologous polyurethane nanofiber scaffold with rapid vascularization function. Biomater Sci. 2020;8(8):2164–74. http://xlink.rsc.org/?DOI=C9BM01911A
  • Ophof R, Maltha JC, Kuijpers-Jagtman AM, Von Den Hoff JW. Evaluation of a collagen-glycosaminoglycan dermal substitute in the dog palate. Tissue Eng. 2007;13(11):2689–98.
  • Panetta NJ, Gupta DM, Slater BJ, Kwan MD, Liu KJ, Longaker MT. Tissue Engineering in Cleft Palate and Other Congenital Malformations. Pediatr Res. 2008 May;63(5):545–51. http://www.nature.com/doifinder/10.1203/PDR.0b013e31816a743e
  • Perin S, McCann CJ, De Coppi P, Thapar N. Isolation and characterisation of mouse intestinal mesoangioblasts. Pediatr Surg Int. 2019;35(1):29–34.
  • Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet. 2011;377(9772):1175–82.
  • Reighard CL, Hollister SJ, Zopf DA. Auricular reconstruction from rib to 3D printing. J 3D Print Med. 2018;2(1):35–41.
  • Rouch JD, Scott A, Jabaji ZB, Chiang E, Wu BM, Lee SL, et al. Basic fibroblast growth factor eluting microspheres enhance distraction enterogenesis. J Pediatr Surg. 2016;51(6):960–5.
  • Sabetkish S, Sabetkish N, Kajbafzadeh A-M. In-vivo regeneration of bladder muscular wall with whole decellularized bladder matrix: A novel hourglass technique for duplication of bladder volume in rabbit model. J Pediatr Surg. 2019;S0022-3468(19):30883–8. http://www.ncbi.nlm.nih.gov/pubmed/31959427
  • Sack BS, Mauney JR, Estrada CR. Silk Fibroin Scaffolds for Urologic Tissue Engineering. Regen Med. 2016;17:16
  • Sahai S, Wilkerson M, Xue H, Moreno N, Carrillo L, Flores R, et al. Wharton’s Jelly for Augmented Cleft Palate Repair in a Rat Critical-Size Alveolar Bone Defect Model. Tissue Eng Part A. 2020;26(11–12):591–601. https://www.liebertpub.com/doi/10.1089/ten.tea.2019.0254
  • Schäfer F-M, Stehr M. Tissue engineering in pediatric urology-a critical appraisal. Innov Surg Sci. 2018;3(2):107–18.
  • Sharif F, Roman S, Asif A, Gigliobianco G, Ghafoor S, Tariq M, et al. Developing a synthetic composite membrane for cleft palate repair. J Tissue Eng Regen Med. 2019;13(7):1178–89.
  • Wang MM, Flores RL, Witek L, Torroni A, Ibrahim A, Wang Z, et al. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Sci Rep. 2019;9(1)
  • Wellisz T. Reconstruction of the burned external ear using a medpor porous polyethylene pivoting helix framework. Plast Reconstr Surg. 1993;91(5):811–8.
  • Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23(1):49–59.