Criptoactivos en el nuevo contexto financierotipos de interés, precio y adopción

  1. Santiago CARBÓ VALVERDE 1
  2. Pedro J. CUADROS-SOLAS 2
  3. Francisco RODRÍGUEZ FERNÁNDEZ 3
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  2. 2 CUNEF Universidad
  3. 3 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Papeles de economía española

ISSN: 0210-9107

Ano de publicación: 2023

Título do exemplar: El regreso de los tipos de interés y sus efectos

Número: 178

Páxinas: 118-129

Tipo: Artigo

Outras publicacións en: Papeles de economía española

Resumo

La evolución de los criptomercados ha revelado la existencia de interconexiones entre criptoactivos, mercados financieros y el ciclo económico. En un contexto de cambio en la inflación y de elevación de tipos de interés, el presente artículo examina la relación existente entre esos tipos de interés, el precio de los criptoactivos y su adopción. Se evidencia una correlación negativa. Tipos elevados se corresponden con menores valoraciones de los criptoactivos y con una menor adopción. Asimismo, el artículo evidencia empíricamente que las características socioeconómicas de los individuos son las que contribuyen en mayor medida a predecir la adopción de los criptoactivos.

Referencias bibliográficas

  • ALONSO-ROBISCO, A. y CARBÓ, J. M. (2022). Can machine learning models save capital for banks? Evidence from a Spanish credit portfolio. International Review of Financial Analysis, 84 (July). https://doi.org/10.1016/j.irfa.2022.102372
  • AUER, R., CORNELLI, G., DOERR, S., FROST, J. y GAMBACORTA, L. (2022). Crypto trading and bitcoin price: evidence from a new database of retail adoption. BIS Working Papers, n.º 1049. Bank for International Settlements.
  • BAJARI, P., NEKIPELOV, D., RYAN, S. P. y Yang, M. (2015). Machine Learning Methods for Demand Estimation. American Economic Review, 105(5), pp. 481-485.
  • BALUTEL, D., FELT, M., NICHOLLS, G. y VOIA, M. (2022a). Bitcoin Awareness, Ownership and Use: 2016 – 20. Bank of Canada Staff Discussion Paper, n.º 2022-10.
  • BALUTEL, D., HENRY, C., VÁSQUEZ, J. y VOIA, M. (2022b). Bitcoin adoption and beliefs in Canada. Canadian Journal of Economics, 55 (November 2022), pp. 1729-1761. https://doi.org/10.1111/caje.12620
  • BARBOZA, F., KIMURA, H. y ALTMAN, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, pp. 405-417. https://doi.org/10.1016/j.eswa.2017.04.006
  • BHIMANI, A., HAUSKEN, K. y ARIF, S. (2022). Do national development factors affect cryptocurrency adoption? Technological Forecasting & Social Change, 181 (August 2021), 121739. https://doi.org/10.1016/j.techfore.2022.121739
  • BÖYÜKASLAN, A. y ECER, F. (2021). Determination of drivers for investing in cryptocurrencies through a fuzzy full consistency method-Bonferroni (FUCOM-F’B) framework. Technology in Society, 67 (September). https://doi.org/10.1016/j.techsoc.2021.101745
  • CARBÓ-VALVERDE, S., CUADROS-SOLAS, P. y RODRÍGUEZ-FERNÁNDEZ, F. (2020). A machine learning approach to the digitalization of bank customers: Evidence from random and causal forests. In PLoS ONE (Vol. 15, Issue 10 October). https://doi.org/10.1371/journal.pone.0240362
  • CARBÓ-VALVERDE, S., CUADROS-SOLAS, P. J. y RODRÍGUEZ-FERNÁNDEZ, F. (2023). Cryptocurrency ownership and biases in perceived financial literacy (July 14, 2023). Available at SSRN: https://ssrn.com/abstract=4509931 or http://dx.doi.org/10.2139/ ssrn.4509931
  • CARMONA, P., CLIMENT, F. y MOMPARLER, A. (2019). Predicting failure in the U.S. banking sector: An extreme gradient boosting approach. International Review of Economics and Finance, 61 (September 2017), pp. 304-323. https://doi.org/10.1016/j.iref.2018.03.008
  • CHEN, M. A., WU, Q. y YANG, B. (2019). How Valuable Is FinTech Innovation? Review of Financial Studies, 32(5), pp. 2062-2106. https://doi.org/10.1093/rfs/hhy130
  • CNMV (2022). Estudio sobre las criptomonedas y la efectividad de las medidas impulsadas por la CNMV.
  • ECB (2022). Financial Stability Review. May 2022, pp. 1-125.
  • FERNÁNDEZ-DELGADO, M., CERNADAS, E. y BARRO, S. (2014). Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15, pp. 3133-3181. https://doi.org/10.1080/13216597.1999.9751892
  • FUJIKI, H. (2020). Who adopts crypto assets in Japan? Evidence from the 2019 financial literacy survey. Journal of The Japanese and International Economies, 58 (July), 101107. https://doi.org/10.1016/j.jjie.2020.101107
  • FUJIKI, H. (2021). Crypto asset ownership, financial literacy, and investment experience. Applied Economics, 53(39), pp. 4560-4581. https://doi.org/10.1080/00036846.2021.1904125
  • GLASER, F., ZIMMERMANN, K., HAFERKORN, M., WEBER, M. C. y SIERING, M. (2014). Bitcoin - Asset or Currency? Revealing Users’ Hidden Intentions (April 15, 2014). ECIS 2014 (Tel Aviv), Available at SSRN: https://ssrn.com/abstract=2425247
  • HACKETHAL, A., HANSPAL, T., LAMMER, D. M. y RINK, K. (2022). The Characteristics and Portfolio Behavior of bitcoin Investors: Evidence from Indirect Cryptocurrency Investments. Review of Finance, December 2021, pp. 855-898.
  • HASSO, T., PELSTER, M. y BREITMAYER, B. (2019). Who trades cryptocurrencies, how do they trade it, and how do they perform? Evidence from brokerage accounts. Journal of Behavioral and Experimental Finance, 23, pp. 64-74. https://doi.org/10.1016/j.jbef.2019.04.009
  • HENRY, C. S., HUYNH, K. P., NICHOLLS, G. y NICHOLSON, M. W. (2019). 2018 bitcoin Omnibus Survey: Awareness and Usage. Bank of Canada Staff Discussion Paper, n.º 2019-10.
  • PANOS, G. A., KARKKAINEN, T. y ATKINSON, A. (2020). Financial Literacy and Attitudes to Cryptocurrencies. Working Papers in Responsible Banking & Finance WP, n.º 20-002.
  • STIX, H. (2021). Ownership and purchase intention of crypto – assets: survey results. In Empirica (Vol. 48, Issue 1). Springer US. https://doi.org/10.1007/s10663020-09499-x
  • TANAKA, K., KINKYO, T. y HAMORI, S. (2016). Random forests-based early warning system for bank failures. Economics Letters, 148, pp. 118-121. https://doi.org/10.1016/j.econlet.2016.09.024
  • TIFFIN, A. (2019). Machine Learning and Causality: The Impact of Financial Crises on Growth. IMF Working Paper, 19(228).
  • ZHAO, H. y ZHANG, L. (2021). Financial literacy or investment experience: which is more influential in cryptocurrency investment? International Journal of Bank Marketing, 39(7), pp. 1208-1226. https://doi.org/10.1108/IJBM-112020-0552