Heavy Metal Pollution in Water: Cause and Remediation Strategies

  1. González-Fernández, Lázaro Adrián
  2. Medellín-Castillo, Nahum Andrés
  3. Navarro-Frómeta, Amado Enrique
  4. Carranza-Álvarez, Candy
  5. Castillo-Ramos, Ventura
  6. Sánchez-Polo, Manuel
  7. Vilasó-Cadre, Javier E.
  8. Díaz-Flores, Paola Elizabeth
  9. Morales-Oyervides, Lourdes
  10. Pérez-Aguilar, Nancy Verónica
  11. Loredo-Portales, René
  12. Sendja, Bridinette Thiodjio 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Libro:
Current Status of Marine Water Microbiology

ISBN: 9789819950218 9789819950225

Año de publicación: 2023

Páginas: 221-262

Tipo: Capítulo de Libro

DOI: 10.1007/978-981-99-5022-5_10 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399
  • Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38
  • Abdulrasheed AA, Jalil AA, Triwahyono S, Zaini MAA, Gambo Y, Ibrahim M (2018) Surface modification of activated carbon for adsorption of SO2 and NOX: a review of existing and emerging technologies. Renew Sustain Energy Rev 94:1067–1085
  • Abebe A, Tilahun S, Mesfine M, Atlabachew M (2017) Removal of cadmium ions from aqueous solution using very small ionic liquids to water ratio without metal chelator and pH modifications. Ethiop J Sci Technol 10(1):51–64
  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediat Biodegrad 3(1):28–39
  • Ahmad AL, Kusumastuti A, Derek CJC, Ooi BS (2011) Emulsion liquid membrane for heavy metal removal: an overview on emulsion stabilization and destabilization. Chem Eng J 171(3):870–882
  • Algieri C, Chakraborty S, Candamano S (2021) A way to membrane-based environmental remediation for heavy metal removal. Environments 8(6):52
  • Alonso-Bravo JN, Montaño-Arias NM, Santoyo-Pizano G, Márquez-Benavides L, Saucedo-Martinez BC, Sánchez-Yáñez JM (2018) Biorecuperación y fitorremediación de suelo impactado por aceite residual automotriz. J Selva Andina Res Soc 9(1):45–51
  • Al-Rashdi BAM, Johnson DJ, Hilal N (2013) Removal of heavy metal ions by nanofiltration. Desalination 315:2–17
  • Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23(12):1989–1998
  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068
  • Aumesquet-Carreto M-Á, Ortega-Delgado B, García-Rodríguez L (2022) Opportunities of reducing the energy consumption of seawater reverse osmosis desalination by exploiting salinity gradients. Membranes 12(11):1045
  • Azevedo-Santos VM, Brito MFG, Manoel PS, Perroca JF, Rodrigues-Filho JL, Paschoal LRP, Goncalves GRL, Wolf MR, Blettler M, Andrade MC (2021) Plastic pollution: a focus on freshwater biodiversity. Ambio 50(7):1313–1324
  • Babilas D, Dydo P (2018) Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Sep Purif Technol 192:419–428
  • Bandosz TJ, Jagiello J, Schwarz JA (1992) Comparison of methods to assess surface acidic groups on activated carbons. Anal Chem 64(8):891–895
  • Batool A, Saleh TA (2020) Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicol Environ Saf 189, 109924
  • Benneker AM, Klomp J, Lammertink RGH, Wood JA (2018) Influence of temperature gradients on mono- and divalent ion transport in electrodialysis at limiting currents. Desalination 443:62–69. https://doi.org/10.1016/j.desal.2018.05.005
  • Bhattacharyya D, Moffitt M, Grieves RB (1978) Charged membrane ultrafiltration of toxic metal oxyanions and cations from single- and multisalt aqueous solutions. Sep Sci Technol 13(5):449–463
  • Bhattacharyya D, Jumawan AB Jr, Grieves RB (1979) Separation of toxic heavy metals by sulfide precipitation. Sep Sci Technol 14(5):441–452
  • Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48(2):463–487
  • BrbootI MM, AbiD BA, Al-ShuwaikI NM (2011) Removal of heavy metals using chemicals precipitation. Eng Technol J 29(3):595–612
  • Březinová T, Vymazal J (2015) Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol Eng 79:94–99
  • Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691
  • Bruch LW, Cole MW, Zaremba E (2007) Physical adsorption: forces and phenomena. Courier Dover Publications, Mineola
  • Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, Ho S-H, Show PL (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589. https://doi.org/10.1016/j.jclepro.2021.126589
  • Chang SH (2016) Types of bulk liquid membrane and its membrane resistance in heavy metal removal and recovery from wastewater. Desalination Water Treat 57(42):19785–19793
  • Chang J, Peng D, Deng S, Chen J, Duan C (2022) Efficient treatment of mercury (II)-containing wastewater in aerated constructed wetland microcosms packed with biochar. Chemosphere 290:133302
  • Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39(10–11):135–138
  • Chaudhry FN, Malik MF (2017) Factors affecting water pollution: a review. J Ecosyst Ecography 7(225):1–3
  • Chen R, Sheehan T, Ng JL, Brucks M, Su X (2020) Capacitive deionization and electrosorption for heavy metal removal. Environ Sci Water Res Technol 6(2):258–282. https://doi.org/10.1039/C9EW00945K
  • Chon K, Cho J, Kim SJ, Jang A (2014) The role of a combined coagulation and disk filtration process as a pre-treatment to microfiltration and reverse osmosis membranes in a municipal wastewater pilot plant. Chemosphere 117:20–26
  • Chung S, Kim S, Kim J-O, Chung J (2014) Feasibility of combining reverse osmosis–ferrite process for reclamation of metal plating wastewater and recovery of heavy metals. Ind Eng Chem Res 53(39):15192–15199
  • Çimen A (2015) Removal of chromium from wastewater by reverse osmosis. Russ J Phys Chem A 89(7):1238–1243
  • Cohen I, Avraham E, Soffer A, Aurbach D (2013) Water desalination by capacitive deionization - advantages limitations and modification. ECS Trans 45(17):43–59. https://doi.org/10.1149/04517.0043ECST/XML
  • de Morais Nepel TC, Landers R, Vieira MGA, de Almeida Neto AF (2020) Metallic copper removal optimization from real wastewater using pulsed electrodeposition. J Hazard Mater 384, 121416
  • Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238(1–3):302–311
  • Dwivedi AK (2017) Researches in water pollution: a review. Int Res J Nat Appl Sci 4(1):118–142
  • Esmaeili A, Ghasemi S (2012) Investigation of Cr (VI) adsorption by dried brown algae Sargassum sp. and its activated carbon. Iran J Chem Chem Eng 31(4):11–19
  • Esmaeili A, Ghasemi S, Sohrabipour J (2010) Biosorption of copper from wastewater by activated carbon preparation from alga Sargassum sp. Nat Prod Res 24(4):341–348
  • Fang L, Li L, Qu Z, Xu H, Xu J, Yan N (2018) A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J Hazard Mater 342:617–624
  • Gao J, Sun S-P, Zhu W-P, Chung T-S (2014) Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Res 63:252–261
  • González Gómez JD (2010). Fitorremediación-una herramienta viable para la descontaminación de aguas y suelo
  • González-Chávez, M. C. A. (2017). Definiciones y problemática en la investigación científica en aspectos de fitoremediación de suelos. Agro Productividad 10(4).
  • Gu J-n, Liang J, Chen C, Li K, Zhou W, Jia J, Sun T (2020) Treatment of real deplating wastewater through an environmental friendly precipitation-electrodeposition-oxidation process: recovery of silver and copper and reuse of wastewater. Sep Purif Technol 248(117):82. https://doi.org/10.1016/J.SEPPUR.2020.117082
  • Gurreri L, Tamburini A, Cipollina A, Micale G (2020) Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives. Membranes 10(7):146
  • Harharah RH, Abdalla GMT, Elkhaleefa A, Shigidi I, Harharah HN (2022) A study of copper (II) ions removal by reverse osmosis under various operating conditions. Separations 9(6):155
  • He M, Li WD, Chen JC, Zhang ZG, Wang XF, Yang GH (2022) Immobilization of silver nanoparticles on cellulose nanofibrils incorporated into nanofiltration membrane for enhanced desalination performance. npj Clean Water 5(1):64
  • Huang Y, Feng X (2019) Polymer-enhanced ultrafiltration: fundamentals, applications and recent developments. J Membr Sci 586:53–83
  • Hutten IM (2016) Filtration mechanisms and theory. In: Handbook of nonwoven filter media, vol 53–107. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-098301-1.00002-2
  • Ihsanullah I, Jamal A, Ilyas M, Zubair M, Khan G, Atieh MA (2020) Bioremediation of dyes: current status and prospects. J Water Process Eng 38:101680
  • Imdad S, Dohare RK (2022) A critical review on heavy metals removal using ionic liquid membranes from the industrial wastewater. Chem Eng Process Process Intensif 108:812
  • Inyinbor Adejumoke A, Adebesin Babatunde O, Oluyori Abimbola P, Adelani Akande Tabitha A, Dada Adewumi O, Oreofe Toyin A (2018) Water pollution: effects, prevention, and climatic impact. Water Challenges Urbaniz World 33:33–47
  • Irfan M, Xu T, Ge L, Wang Y, Xu T (2019) Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity: investigating the effect of functional groups and operating parameters. J Membr Sci 588:117211
  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8
  • Juve J-MA, Christensen FM, Wang Y, Wei Z (2022) Electrodialysis for metal removal and recovery: a review. Chem Eng J 435:134857
  • Kalfa A, Shapira B, Shopin A, Cohen I, Avraham E, Aurbach D (2020) Capacitive deionization for wastewater treatment: opportunities and challenges. Chemosphere 241:125003. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125003
  • Khanna R, Gupta S (2018) Agrochemicals as a potential cause of ground water pollution: a review. Int J Chem Stud 6(3):985–990
  • Kim J-H, Lee SY, Rha S, Lee YJ, Jo HY, Lee S (2021) Treatment of heavy metal wastewater by ceramic microfilter functionalized with magnesium oxides. Water Air Soil Pollut 232(12):1–13
  • Knox AS, Paller MH, Seaman JC, Mayer J, Nicholson C (2021) Removal, distribution and retention of metals in a constructed wetland over 20 years. Sci Total Environ 796:149062
  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521
  • Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28(20):24917–24939
  • Kuleyin A, Uysal HE (2020) Recovery of copper ions from industrial wastewater by electrodeposition. Int J Electrochem Sci 15:1474–1485. https://doi.org/10.20964/2020.02.39
  • Kumar M, Nandi M, Pakshirajan K (2021) Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J Environ Manag 278:111555
  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24(1):39–51
  • Ladole MR, Patil SS, Paraskar PM, Pokale PB, Patil PD (2021) Desalination using electrodialysis. In: Advances in science, technology and innovation. Springer, Berlin, pp 15–38. https://doi.org/10.1007/978-3-030-72873-1_2/COVER
  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3(2):275–290
  • Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356
  • Li P, Lan H, Chen K, Ma X, Wei B, Wang M, Li P, Hou Y, Niu QJ (2022) Novel high-flux positively charged aliphatic polyamide nanofiltration membrane for selective removal of heavy metals. Sep Purifi Technol 280:119949
  • Liang L, Chen Q, Jiang F, Yuan D, Qian J, Lv G, Xue H, Liu L, Jiang H-L, Hong M (2016) In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg (II) from water. J Mater Chem A 4(40):15370–15374
  • Lin Q, Li L, Liang S, Liu M, Bi J, Wu L (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B Environ 163:135–142. https://doi.org/10.1016/j.apcatb.2014.07.053
  • Liu X, Jiang B, Yin X, Ma H, Hsiao BS (2020) Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Sep Purif Technol 233:115976
  • López RAN, Vong YM, Borges RO, Olguín EJ (2004) Fitorremediación: fundamentos y aplicaciones. Revista Ciencia:69–83
  • Luo J-S, Zhang Z (2021) Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J 9(3):521–529
  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237
  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44
  • Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17(4):1495–1521
  • Mariana M, Abdul AK, Mistar EM, Yahya EB, Alfatah T, Danish M, Amayreh M (2021) Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J Water Process Eng 43:102221
  • Marrero-Coto J, Amores-Sánchez I, Coto-Pérez O (2012) Phytoremediation, a technology that involves plants and microorganisms in environmental remediation. ICIDCA Sobre Los Derivados de La Caña de Azúcar 46(3):52–61
  • Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36(19):4757–4764
  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2(2):e1500323
  • Min KJ, Choi SY, Jang D, Lee J, Park KY (2019) Separation of metals from electroplating wastewater using electrodialysis. Energy Sources A Recov Utiliz Environ Effects 41(20):2471–2480
  • Min KJ, Kim JH, Park KY (2021) Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment. Sci Total Environ 757:143762
  • Mnif A, Bejaoui I, Mouelhi M, Hamrouni B (2017) Hexavalent chromium removal from model water and car shock absorber factory effluent by nanofiltration and reverse osmosis membrane. Int J Anal Chem 2017:7415708
  • Moctezuma Granados CE (2017) Evaluación de Pseudomonas endófitas de la raíz de Typha latifolia en la fitoextracción de Cd (II). Repositorio Nacional Conacyt
  • Moss B (2008) Water pollution by agriculture. Philos Trans R Soc B Biol Sci 363(1491):659–666
  • Muddemann T, Haupt D, Sievers M, Kunz U (2019) Electrochemical reactors for wastewater treatment. ChemBioEng Rev 6(5):142–156. https://doi.org/10.1002/CBEN.201900021
  • Mungray AA, Kulkarni SV, Mungray AK (2012) Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review. Cent Eur J Chem 10(1):27–46
  • Nisa KU, Tarfeen N, Nisa Q (2022) Potential role of wetlands in remediation of metals and metalloids: a review. In: Metals metalloids soil plant water systems. Elsevier, Amsterdam, pp 427–444
  • Ortiz Cáceres EA (2020) Análisis y propuesta de técnicas de fitorremediación para disminuir la presencia de compuestos orgánicos volátiles en el aire en la industria de pinturas de Lima Metropolitana, durante el período 2014 al 2019
  • Ozaki H, Sharma K, Saktaywin W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294
  • Pang FM, Teng SP, Teng TT, Omar AKM (2009) Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions. Water Qual Res J 44(2):174–182
  • Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. john wiley & sons
  • Petrinic I, Korenak J, Povodnik D, Hélix-Nielsen C (2015) A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. J Clean Prod 101:292–300
  • Peydayesh M, Mohammadi T, Nikouzad SK (2020) A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Membr Sci 611:118205
  • Pohl A (2020) Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut 231(10):1–17
  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–474
  • Qi Y, Zhu L, Shen X, Sotto A, Gao C, Shen J (2019) Polythyleneimine-modified original positive charged nanofiltration membrane: removal of heavy metal ions and dyes. Sep Purif Technol 222:117–124
  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385
  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160
  • Ramos VC, Han W, Yeung KL (2020a) A comparative study between ionic liquid coating and counterparts in bulk for toluene absorption. Green Chem Eng 1(2):147–154. https://doi.org/10.1016/J.GCE.2020.10.008
  • Ramos VC, Han W, Zhang X, Zhang S, Yeung KL (2020b) Supported ionic liquids for air purification. Curr Opin Green Sustain Chem 25:100391. https://doi.org/10.1016/j.cogsc.2020.100391
  • Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522, 267–291
  • Regel-Rosocka M, Rzelewska M, Baczynska M, Janus M, Wisniewski M (2015) Removal of palladium (II) from aqueous chloride solutions with cyphos phosphonium ionic liquids as metal ion carriers for liquid-liquid extraction and transport across polymer inclusion membranes. Physicochem Probl Miner Process 51:621–631
  • Ricci BC, Ferreira CD, Aguiar AO, Amaral MCS (2015) Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent. Sep Purif Technol 154:11–21
  • Ricco R, Konstas K, Styles MJ, Richardson JJ, Babarao R, Suzuki K, Scopece P, Falcaro P (2015) Lead (II) uptake by aluminium based magnetic framework composites (MFCs) in water. J Mater Chem A 3(39):19822–19831
  • Rodriguez-Reinoso F (1997) Activated carbon. In: Introduction to carbon technologies. Elsevier, Amsterdam
  • Rolón-Cárdenas GA, Arvizu-Gómez JL, Pacheco-Aguilar JR, Vázquez-Martínez J, Hernández-Morales A (2021) Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd. Braz J Microbiol 52(1):349–361
  • Rossner A, Snyder SA, Knappe DRU (2009) Removal of emerging contaminants of concern by alternative adsorbents. Water Res 43(15):3787–3796
  • Ruhal R, Choudhury B (2012) Membrane separation and design. In: Handbook of food process design. Wiley, New York, pp 769–788
  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York
  • Sales da Silva IG, Gomes de Almeida FC, Padilha da Rocha e Silva NM, Casazza AA, Converti A, Asfora Sarubbo L (2020) Soil bioremediation: overview of technologies and trends. Energies 13(18):4664
  • Sato T, Imaizumi M, Kato O, Taniguchi Y (1977) RO applications in wastewater reclamation for re-use. Desalination 23(1–3):65–76
  • Schück M, Greger M (2020) Screening the capacity of 34 wetland plant species to remove heavy metals from water. Int J Environ Res Public Health 17(13):4623
  • Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35(1):109–136
  • Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774
  • Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J (2021) High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms. Chemosphere 264:128455
  • Shen H, Jiang H, Mao H, Pan G, Zhou L, Cao Y (2007) Simultaneous determination of seven phthalates and four parabens in cosmetic products using HPLC-DAD and GC-MS methods. J Sep Sci 30(1):48–54
  • Shocron AN, Atlas I, Suss ME (2022) Predicting ion selectivity in water purification by capacitive deionization: electric double layer models. Curr Opin Colloid Interface Sci 60:101602. https://doi.org/10.1016/J.COCIS.2022.101602
  • Singh S, Benny CK, Chakraborty S (2022) An overview on the application of constructed wetlands for the treatment of metallic wastewater. In: Biodegradation and detoxification of micropollutants in industrial wastewater. Elsevier, Amsterdam, pp 103–130
  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8
  • Stando G, Hannula PM, Kumanek B, Lundström M, Janas D (2021) Copper recovery from industrial wastewater - synergistic electrodeposition onto nanocarbon materials. Water Resour Ind 26:100156. https://doi.org/10.1016/J.WRI.2021.100156
  • Suzuki M, Suzuki M (1990) Adsorption engineering (vol. 14). Kodansha Tokyo
  • Sylwan I, Thorin E (2021) Removal of heavy metals during primary treatment of municipal wastewater and possibilities of enhanced removal: a review. Water 13(8):1121
  • Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G (2019) Various cell architectures of capacitive deionization: recent advances and future trends. Water Res 150:225–251. https://doi.org/10.1016/J.WATRES.2018.11.064
  • Tatiparti SSV, Ebrahimi F (2012) Potentiostatic versus galvanostatic electrodeposition of nanocrystalline Al-Mg alloy powders. J Solid State Electrochem 16(3):1255–1262. https://doi.org/10.1007/S10008-011-1522-5/FIGURES/6
  • Tortora F, Innocenzi V, Prisciandaro M, Vegliò F, Mazziotti di Celso G (2016) Heavy metal removal from liquid wastes by using micellar-enhanced ultrafiltration. Water Air Soil Pollut 227(7):1–11
  • Van der Perk M (2014) Soil and water contamination. CRC Press, Boca Raton
  • Vardhan KH, Kumar PS, Panda RC (2019) A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liquids 290:111197
  • Ventura D, Ferrante M, Copat C, Grasso A, Milani M, Sacco A, Licciardello F, Cirelli GL (2021) Metal removal processes in a pilot hybrid constructed wetland for the treatment of semi-synthetic stormwater. Sci Total Environ 754:142221
  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369
  • Verma B, Balomajumder C, Sabapathy M, Gumfekar SP (2021) Pressure-driven membrane process: a review of advanced technique for heavy metals remediation. Processes 9(5):752
  • Vidali M (2001) Bioremediation. an overview. Pure Appl Chem 73(7):1163–1172
  • Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S (2016) Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manag 179:93–102
  • Vincent M, Laurio O, Velandres JA, Alfafara CG, Migo VP, Concepcion M, Detras M, Sunga-Amparo JM, Mendoza M (2020) Potentiostatic electrodeposition as an option to the traditional recovery of silver in artisanal gold smelting wastewater in Bulacan, Philippines. Philipp Eng J 41(1):67–86. https://journals.upd.edu.ph/index.php/pej/article/view/7148
  • Viramontes-Acosta A, Hernández-López M, Velasquez-Chavez TE, Mendez-Almaraz R (2020) Construcción de un Humedal para la fitorremediación de agua residual en el Instituto Tecnológico Superior de Lerdo. Revista Ciencia 1
  • Volesky B (2003) Sorption and biosorption. BV Sorbex, St. Lambert, p 326
  • Wang L, Lin S (2018) Membrane capacitive deionization with constant current vs constant voltage charging: which is better? Environ Sci Technol 52(7):4051–4060. https://doi.org/10.1021/ACS.EST.7B06064/SUPPL_FILE/ES7B06064_SI_001.PDF
  • Wang L, Lin S (2019) Mechanism of selective ion removal in membrane capacitive deionization for water softening. Environ Sci Technol 53(10):5797–5804. https://doi.org/10.1021/ACS.EST.9B00655/SUPPL_FILE/ES9B00655_SI_001.PDF
  • Wang LK, Vaccari DA, Li Y, Shammas NK (2005) Chemical precipitation. In: Physicochemical treatment processes. Springer, Berlin, pp 141–197
  • Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X (2010) Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem Mater 22(18):5119–5121
  • Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382
  • Wang C, Liu X, Chen JP, Li K (2015a) Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci Rep 5(1):1–10
  • Wang X, Gao Y, Wang J, Wang Z, Chen L (2015b) Chemical adsorption: another way to anchor polysulfides. Nano Energy 12:810–815
  • Wang L, Shi C, Pan L, Zhang X, Zou J-J (2020a) Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale 12(8):4790–4815
  • Wang W, Shu G, Tian H, Zhu X (2020b) Removals of Cu(II), Ni(II), Co(II) and Ag(I) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries. Sep Purif Technol 235:116230. https://doi.org/10.1016/J.SEPPUR.2019.116230
  • Wang C, Li T, Yu G, Deng S (2021) Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition. Chemosphere 263:128208. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128208
  • Wang J, Long Y, Yu G, Wang G, Zhou Z, Li P, Yang YZK, Wang S (2022a) A review on microorganisms in constructed wetlands for typical pollutant removal: species, function, and diversity. In: Environmental monitoring and remediation using microbiotechnology, vol 845. Frontiers Media SA, Lausanne, p 725176
  • Wang L, Xu D, Zhang Q, Liu T, Tao Z (2022b) Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types. Environ Sci Pollut Res 29(1):768–778
  • Wang G, Yu G, Chi T, Li Y, Zhang Y, Wang J, Li P, Liu J, Yu Z, Wang Q (2023) Insights into the enhanced effect of biochar on cadmium removal in vertical flow constructed wetlands. J Hazard Mater 443:130148
  • Wdowczyk A, Szymańska-Pulikowska A, Gałka B (2022) Removal of selected pollutants from landfill leachate in constructed wetlands with different filling. Bioresour Technol 353:127136
  • Webb PA (2003) Introduction to chemical adsorption analytical techniques and their applications to catalysis. Micromeritics Instrument Corp. Technical Publications, Norcross, pp 1–12
  • Wu Y, Pang H, Yao W, Wang X, Yu S, Yu Z, Wang X (2018) Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U (VI): batch experiments and spectroscopy study. Sci Bull 63(13):831–839
  • Wu C, Gao J, Liu Y, Jiao W, Su G, Zheng R, Zhong H (2022) High-gravity intensified electrodeposition for efficient removal of Cd2+ from heavy metal wastewater. Sep Purif Technol 289:120809. https://doi.org/10.1016/J.SEPPUR.2022.120809
  • Xiang H, Min X, Tang C-J, Sillanpää M, Zhao F (2022) Recent advances in membrane filtration for heavy metal removal from wastewater: a mini review. J Water Process Eng 49:103023
  • Xu Z, Li K, Li W, Wu C, Chen X, Huang J, Zhang X, Ban Y (2022) The positive effects of arbuscular mycorrhizal fungi inoculation and/or additional aeration on the purification efficiency of combined heavy metals in vertical flow constructed wetlands. Environ Sci Pollut Res 29:68950–68964
  • Yahaya YA, Don MM (2014) Pycnoporus sanguineus as potential biosorbent for heavy metal removal from aqueous solution: a review. J Phys Sci 25(1):1
  • Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New York
  • Yang J-C, Yin X-B (2017) CoFe2O4@ MIL-100 (Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Sci Rep 7(1):1–15
  • Yang Q, Zhao Q, Ren S, Lu Q, Guo X, Chen Z (2016) Fabrication of core-shell Fe3O4@ MIL-100 (Fe) magnetic microspheres for the removal of Cr (VI) in aqueous solution. J Solid State Chem 244:25–30
  • Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U (2020) Toxicity of mercury: molecular evidence. Chemosphere 245:125586
  • Ye C-C, An Q-F, Wu J-K, Zhao F-Y, Zheng P-Y, Wang N-X (2019) Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal. Chem Eng J 359:994–1005
  • Yesil H, Tugtas AE (2019) Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Sci Total Environ 693:133608
  • Yu G, Li P, Wang G, Wang J, Zhang Y, Wang S, Yang K, Du C, Chen H (2021) A review on the removal of heavy metals and metalloids by constructed wetlands: bibliometric, removal pathways, and key factors. World J Microbiol Biotechnol 37(9):1–12
  • Yu G, Wang G, Chi T, Du C, Wang J, Li P, Zhang Y, Wang S, Yang K, Long Y (2022) Enhanced removal of heavy metals and metalloids by constructed wetlands: a review of approaches and mechanisms. Sci Total Environ 821:153516
  • Zhang Y, Zhao X, Huang H, Li Z, Liu D, Zhong C (2015) Selective removal of transition metal ions from aqueous solution by metal–organic frameworks. RSC Adv 5(88):72107–72112
  • Zhang X, Li X, Yang H, Cui Z (2018) Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicol Environ Saf 157:21–28
  • Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD (2021) Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives. Environ Sci Technol 55(8):4243–4267. https://doi.org/10.1021/ACS.EST.0C06552/ASSET/IMAGES/LARGE/ES0C06552_0008.JPEG
  • Zhao X, Wei H, Zhao H, Wang Y, Tang N (2020) Electrode materials for capacitive deionization: a review. J Electroanal Chem 873:114416. https://doi.org/10.1016/J.JELECHEM.2020.114416
  • Zheng X, Ni C, Xiao W, Liang Y, Li Y (2022) Ionic liquid grafted polyethersulfone nanofibrous membrane as recyclable adsorbent with simultaneous dye, heavy metal removal and antibacterial property. Chem Eng J 428:132111
  • Zulkefeli NSW, Weng SK, Abdul Halim NS (2018) Removal of heavy metals by polymer inclusion membranes. Curr Pollut Rep 4(2):84–92