Nanomaterials in Biomedical Applications: Specific Case of the Transport and Controlled Release of Ciprofloxacin

  1. García, Guillermo Mangas
  2. Ramos, Ventura Castillo
  3. García-Reyes, Cinthia Berenice
  4. Casas, Ricardo Navarrete
  5. Polo, Manuel Sánchez
  6. Ramón, María Victoria López 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Libro:
Planet Earth: Scientific Proposals to Solve Urgent Issues

ISBN: 9783031532078 9783031532085

Año de publicación: 2024

Páginas: 125-140

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-53208-5_6 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Abioye, A., Sanyaolu, A., Dudzinska, P., Adepoju-Bello, A. A., & Coker, H. A. B. (2020). Chitosan-induced synergy for extended antimicrobial potency and enhanced in vitro drug release of free base ciprofloxacin nanoplexes. Pharmaceutical Nanotechnology, 8(1), 33–53. https://doi.org/10.2174/2211738507666191021102256
  • Andrade, G. F., Faria, J. A. Q. A., Gomes, D. A., de Barros, A. L. B., Fernandes, R. S., Coelho, A. C. S., Takahashi, J. A., da Silva Cunha, A., & de Sousa, E. M. B. (2018). Mesoporous silica SBA-16/hydroxyapatite-based composite for ciprofloxacin delivery to bacterial bone infection. Journal of Sol-Gel Science and Technology, 85(2), 369–381. https://doi.org/10.1007/s10971-017-4557-y
  • Araichimani, P., Suresh Kumar, G., Prabu, K. M., Karunakaran, G., van Minh, N., Kolesnikov, E., Gorshenkov, M., & v. (2021). Amorphous silica nanoparticles derived from biowaste via microwave combustion for drug delivery. International Journal of Applied Ceramic Technology, 18(3), 583–589. https://doi.org/10.1111/ijac.13693
  • Arcieri, G. M., Becker, N., Esposito, B., Griffith, E., Heyd, A., Neumann, C., O’Brien, B., & Schacht, P. (1989). Safety of intravenous ciprofloxacin. The American Journal of Medicine, 87(5), S92–S97. https://doi.org/10.1016/0002-9343(89)90032-6
  • Bahram, M., Mohseni, N., & Moghtader, M. (2016). An introduction to hydrogels and some recent applications. In Emerging concepts in analysis and applications of hydrogels. IntechOpen. https://doi.org/10.5772/64301
  • Balarak, D., Mostafapour, F., & Azarpira, H. (2016). Adsorption kinetics and equilibrium of ciprofloxacin from aqueous solutions using Corylus avellana (Hazelnut) activated carbon. British Journal of Pharmaceutical Research, 13(3), 1–14. https://doi.org/10.9734/BJPR/2016/29357
  • Balfour, J. A., & Faulds, D. (1993). Oral ciprofloxacin. PharmacoEconomics, 3(5), 398–421. https://doi.org/10.2165/00019053-199303050-00007
  • Banoee, M., Seif, S., Nazari, Z. E., Jafari-Fesharaki, P., Shahverdi, H. R., Moballegh, A., Moghaddam, K. M., & Shahverdi, A. R. (2010). ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93B(2), 557–561. https://doi.org/10.1002/jbm.b.31615
  • Barenholz, Y. (Chezy). (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
  • Belbekhouche, S., Poostforooshan, J., Shaban, M., Ferrara, B., Alphonse, V., Cascone, I., Bousserrhine, N., Courty, J., & Weber, A. P. (2020). Fabrication of large pore mesoporous silica microspheres by salt-assisted spray-drying method for enhanced antibacterial activity and pancreatic cancer treatment. International Journal of Pharmaceutics, 590, 119930. https://doi.org/10.1016/j.ijpharm.2020.119930
  • Bergan, T., Dalhoff, A., & Rohwedder, R. (1988). Pharmacokinetics of ciprofloxacin. Infection, 16(S1), S3–S13. https://doi.org/10.1007/BF01650500
  • Campoli-Richards, D. M., Monk, J. P., Price, A., Benfield, P., Todd, P. A., & Ward, A. (1988). Ciprofloxacin. Drugs, 35(4), 373–447. https://doi.org/10.2165/00003495-198835040-00003
  • ClinCal LLC. (2021). Ciprofloxacin, ClinCalc DrugStats Database, Version 2021.10. https://clincalc.com/DrugStats/Drugs/Ciprofloxacin
  • Dimatteo, R., Darling, N. J., & Segura, T. (2018). In situ forming injectable hydrogels for drug delivery and wound repair. Advanced Drug Delivery Reviews, 127, 167–184. https://doi.org/10.1016/J.ADDR.2018.03.007
  • Ebrahimi, R., & Salavaty, M. (2018). Controlled drug delivery of ciprofloxacin from ultrasonic hydrogel. E-Polymers, 18(2), 187–195. https://doi.org/10.1515/epoly-2017-0123
  • Ehlert, N., Badar, M., Christel, A., Lohmeier, S. J., Luessenhop, T., Stieve, M., Lenarz, T., Mueller, P. P., & Behrens, P. (2011). Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. Journal of Materials Chemistry, 21(3), 752–760. https://doi.org/10.1039/C0JM01487G
  • Ehlert, N., Mueller, P. P., Stieve, M., Lenarz, T., & Behrens, P. (2013). Mesoporous silica films as a novel biomaterial: Applications in the middle ear. Chemical Society Reviews, 42(9), 3847. https://doi.org/10.1039/c3cs35359a
  • Esfahanian, M., Ghasemzadeh, M. A., & Razavian, S. M. H. (2019). Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 2024–2030. https://doi.org/10.1080/21691401.2019.1617729
  • Fass, R. J. (1990). Ciprofloxacin. Postgraduate Medicine, 87(8), 117–131. https://doi.org/10.1080/00325481.1990.11704677
  • Flórez Beledo, J., Mediavilla Martínez, A., & Armijo Simón, J. A. (2013). Farmacología humana—6th Edition. https://www.elsevier.com/books/farmacologia-humana/florez-beledo/978-84-458-2316-3
  • Gaharwar, A. K., Peppas, N. A., & Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 111(3), 441–453. https://doi.org/10.1002/BIT.25160
  • García, M. C., Cuggino, J. C., Rosset, C. I., Páez, P. L., Strumia, M. C., Manzo, R. H., Alovero, F. L., Alvarez Igarzabal, C. I., & Jimenez-Kairuz, A. F. (2016). A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release. Materials Science and Engineering C, 69, 236–246. https://doi.org/10.1016/j.msec.2016.06.071
  • García-Reyes, C. B., Salazar-Rábago, J. J., Sánchez-Polo, M., Loredo-Cancino, M., & Leyva-Ramos, R. (2021). Ciprofloxacin, ranitidine, and chlorphenamine removal from aqueous solution by adsorption. Mechanistic and regeneration analysis. Environmental Technology and Innovation, 24, 102060. https://doi.org/10.1016/j.eti.2021.102060
  • Gessner, I., Krakor, E., Jurewicz, A., Wulff, V., Kling, L., Christiansen, S., Brodusch, N., Gauvin, R., Wortmann, L., Wolke, M., Plum, G., Schauss, A., Krautwurst, J., Ruschewitz, U., Ilyas, S., & Mathur, S. (2018). Hollow silica capsules for amphiphilic transport and sustained delivery of antibiotic and anticancer drugs. RSC Advances, 8(44), 24883–24892. https://doi.org/10.1039/C8RA03716G
  • Ghaith, E.-S., & Connolly, S. (2014). Evaluation of mesoporous SBA-15 for the controlled delivery of ciprofloxacin hydrochloride. Bioinspired, Biomimetic and Nanobiomaterials, 3(4), 199–207. https://doi.org/10.1680/bbn.14.00002
  • Ghauri, Z. H., Islam, A., Qadir, M. A., Gull, N., Haider, B., Khan, R. U., & Riaz, T. (2021). Development and evaluation of pH-sensitive biodegradable ternary blended hydrogel films (chitosan/guar gum/PVP) for drug delivery application. Scientific Reports, 11(1), 21255. https://doi.org/10.1038/s41598-021-00452-x
  • Ghosh, S. K., Das, A., Basu, A., Halder, A., Das, S., Basu, S., Abdullah, M. F., Mukherjee, A., & Kundu, S. (2018). Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. International Journal of Biological Macromolecules, 120, 1823–1833. https://doi.org/10.1016/j.ijbiomac.2018.09.212
  • Günday, C., Anand, S., Gencer, H. B., Munafò, S., Moroni, L., Fusco, A., Donnarumma, G., Ricci, C., Hatir, P. C., Türeli, N. G., Türeli, A. E., Mota, C., & Danti, S. (2020). Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Delivery and Translational Research, 10(3), 706–720. https://doi.org/10.1007/s13346-020-00736-1
  • Günday Türeli, N., Torge, A., Juntke, J., Schwarz, B. C., Schneider-Daum, N., Türeli, A. E., Lehr, C.-M., & Schneider, M. (2017). Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. European Journal of Pharmaceutics and Biopharmaceutics, 117, 363–371. https://doi.org/10.1016/j.ejpb.2017.04.032
  • Hasan, Md. N., Bera, A., Maji, T. K., & Pal, S. K. (2021). Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chimica Acta, 523, 120381. https://doi.org/10.1016/j.ica.2021.120381
  • Hashemikia, S., Farhangpazhouh, F., Parsa, M., Hasan, M., Hassanzadeh, A., & Hamidi, M. (2021). Fabrication of ciprofloxacin-loaded chitosan/polyethylene oxide/silica nanofibers for wound dressing application: In vitro and in vivo evaluations. International Journal of Pharmaceutics, 597, 120313. https://doi.org/10.1016/j.ijpharm.2021.120313
  • Hezma, A. M., Elkhooly, T. A., & El-Bahy, G. S. (2020). Fabrication and characterization of bioactive chitosan microspheres incorporated with mesoporous silica nanoparticles for biomedical applications. Journal of Porous Materials, 27(2), 555–562. https://doi.org/10.1007/s10934-019-00837-4
  • Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64(SUPPL.), 18–23. https://doi.org/10.1016/J.ADDR.2012.09.010
  • Hussein, E. A., & Kareem, S. H. (2021). Mesoporous silica nanoparticles as a system for ciprofloxacin drug delivery; kinetic of adsorption and releasing. Baghdad Science Journal, 18(2). https://doi.org/10.21123/bsj.2021.18.2.0357
  • Ji, X.-J., Luan, G.-F., Lyu, J.-C., Cui, L.-Y., Li, S.-Q., Zeng, R.-C., & Wang, Z.-L. (2020). Corrosion resistance and tunable release of ciprofloxacin-loaded multilayers on magnesium alloy: Effects of SiO2 nanoparticles. Applied Surface Science, 508, 145240. https://doi.org/10.1016/j.apsusc.2019.145240
  • Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics, 420(1), 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032
  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials, 244–245, 444–456. https://doi.org/10.1016/j.jhazmat.2012.11.011
  • Korzeniowska, A., Strzempek, W., Makowski, W., Menaszek, E., Roth, W. J., & Gil, B. (2020). Incorporation and release of a model drug, ciprofloxacin, from non-modified SBA-15 molecular sieves with different pore sizes. Microporous and Mesoporous Materials, 294, 109903. https://doi.org/10.1016/j.micromeso.2019.109903
  • LeBel, M. (1988). Ciprofloxacin: Chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 8(1), 3–30. https://doi.org/10.1002/j.1875-9114.1988.tb04058.x
  • Lensing, R., Bleich, A., Smoczek, A., Glage, S., Ehlert, N., Luessenhop, T., Behrens, P., Müller, P. P., Kietzmann, M., & Stieve, M. (2013). Efficacy of nanoporous silica coatings on middle ear prostheses as a delivery system for antibiotics: An animal study in rabbits. Acta Biomaterialia, 9(1), 4815–4825. https://doi.org/10.1016/j.actbio.2012.08.016
  • Li, X. X., Zhong, H., Li, X. X., Jia, F., Cheng, Z., Zhang, L., Yin, J., An, L., & Guo, L. (2014). Synthesis of attapulgite/N-isopropylacrylamide and its use in drug release. Materials Science and Engineering C, 45, 170–175. https://doi.org/10.1016/j.msec.2014.08.056
  • Nabipour, H., Sadr, M. H., & Bardajee, G. R. (2017). Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New Journal of Chemistry, 41(15), 7364–7370. https://doi.org/10.1039/C7NJ00606C
  • Narasimha Reddy, M., Cheralathan, K. K., & Sasikumar, S. (2015). In vitro bioactivity and drug release kinetics studies of mesoporous silica-biopolymer composites. Journal of Porous Materials, 22(6), 1465–1472. https://doi.org/10.1007/s10934-015-0027-5
  • Nasrabadi, M., Ghasemzadeh, M. A., & Zand Monfared, M. R. (2019). The preparation and characterization of UiO-66 metal–organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities. New Journal of Chemistry, 43(40), 16033–16040. https://doi.org/10.1039/C9NJ03216A
  • Nawaz, A., Ali, S. M., Rana, N. F., Tanweer, T., Batool, A., Webster, T. J., Menaa, F., Riaz, S., Rehman, Z., Batool, F., Fatima, M., Maryam, T., Shafique, I., Saleem, A., & Iqbal, A. (2021). Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: An In Vivo assessment. Nanomaterials, 11(11), 3152. https://doi.org/10.3390/nano11113152
  • Olawale, M. D., Tella, A. C., Obaleye, J. A., & Olatunji, J. S. (2020). Synthesis, characterization and crystal structure of a copper-glutamate metal organic framework (MOF) and its adsorptive removal of ciprofloxacin drug from aqueous solution. New Journal of Chemistry, 44(10), 3961–3969. https://doi.org/10.1039/D0NJ00515K
  • Padhi, J. R., Nayak, D., Nanda, A., Rauta, P. R., Ashe, S., & Nayak, B. (2016). Development of highly biocompatible Gelatin & i-Carrageenan based composite hydrogels: In depth physiochemical analysis for biomedical applications. Carbohydrate Polymers, 153, 292–301. https://doi.org/10.1016/j.carbpol.2016.07.098
  • Prasad Dewangan, R., Kumari, S., Kumar Mahto, A., Jain, A., & Pasha, S. (2020). Self-assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus. Bioorganic Chemistry, 102, 104052. https://doi.org/10.1016/j.bioorg.2020.104052
  • Prusty, K., Biswal, A., Biswal, S. B., & Swain, S. K. (2019). Synthesis of soy protein/polyacrylamide nanocomposite hydrogels for delivery of ciprofloxacin drug. Materials Chemistry and Physics, 234, 378–389. https://doi.org/10.1016/j.matchemphys.2019.05.038
  • Ramos, V. C., Han, W., Zhang, X., Zhang, S., & Yeung, K. L. (2020). Supported ionic liquids for air purification. Current Opinion in Green and Sustainable Chemistry, 25, 100391. https://doi.org/10.1016/j.cogsc.2020.100391
  • Rehman, A., Patrick, W. M., & Lamont, I. L. (2019). Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: New approaches to an old problem. Journal of Medical Microbiology, 68(1), 1–10. https://doi.org/10.1099/jmm.0.000873
  • Sanders, C. C. (1988). Ciprofloxacin: In Vitro activity, mechanism of action, and resistance. Clinical Infectious Diseases, 10(3), 516–527. https://doi.org/10.1093/clinids/10.3.516
  • Schacht, P., Arcieri, G., & Hullmann, R. (1989). Safety of oral ciprofloxacin. The American Journal of Medicine, 87(5), S98–S102. https://doi.org/10.1016/0002-9343(89)90033-8
  • Settimo, L., Bellman, K., & Knegtel, R. M. A. (2014). Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharmaceutical Research, 31(4), 1082–1095. https://doi.org/10.1007/s11095-013-1232-z
  • Shazly, G. A. (2017). Ciprofloxacin controlled-solid lipid nanoparticles: Characterization, in vitro release, and antibacterial activity assessment. BioMed Research International, 2017, 1–9. https://doi.org/10.1155/2017/2120734
  • Shi, A., Li, D., Liu, H., Adhikari, B., & Wang, Q. (2016). Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles. International Journal of Biological Macromolecules, 87, 55–61. https://doi.org/10.1016/j.ijbiomac.2016.02.038
  • Singh, B., & Kumar, A. (2018). Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties. International Journal of Biological Macromolecules, 108, 477–488. https://doi.org/10.1016/j.ijbiomac.2017.12.041
  • Singh, B., Varshney, L., & Sharma, V. (2014). Design of sterile mucoadhesive hydrogels for use in drug delivery: Effect of radiation on network structure. Colloids and Surfaces b: Biointerfaces, 121, 230–237. https://doi.org/10.1016/j.colsurfb.2014.06.020
  • Singh, B., Kanwar, J. S., & Kumari, P. (2018). Modification of dietary fiber psyllium with poly(vinyl pyrrolidone) through network formation for use in slow drug delivery application. Polymer Science—Series B, 60(3), 331–348. https://doi.org/10.1134/S156009041803017X
  • Singh, P., Srivastava, S., & Singh, S. K. (2019). Nanosilica: recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomaterials Science and Engineering, 5(10), 4882–4898. https://doi.org/10.1021/acsbiomaterials.9b00464
  • Singh, B., Dhiman, A., Rajneesh, & Kumar, A. (2016). Slow release of ciprofloxacin from β- cyclodextrin containing drug delivery system through network formation and supramolecular interactions. International Journal of Biological Macromolecules, 92, 390–400. https://doi.org/10.1016/j.ijbiomac.2016.07.060
  • Skwira, A., Szewczyk, A., & Prokopowicz, M. (2019a). The Effect of polydimethylsiloxane-ethylcellulose coating blends on the surface characterization and drug release of ciprofloxacin-loaded mesoporous silica. Polymers, 11(9), 1450. https://doi.org/10.3390/polym11091450
  • Skwira, A., Szewczyk, A., Konopacka, A., Górska, M., Majda, D., Sądej, R., & Prokopowicz, M. (2019b). Silica-polymer composites as the novel antibiotic delivery systems for bone tissue infection. Pharmaceutics, 12(1), 28. https://doi.org/10.3390/pharmaceutics12010028
  • Sobhani, Z., Mohammadi Samani, S., Montaseri, H., & Khezri, E. (2017). Nanoparticles of Chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Advanced Pharmaceutical Bulletin, 7(3), 427–432. https://doi.org/10.15171/apb.2017.051
  • Sohrabnezhad, S. /0258, Poursafar, Z., & Asadollahi, A. (2020). Synthesis of novel core@shell of MgAl layered double hydroxide @ porous magnetic shell (MgAl-LDH@PMN) as carrier for ciprofloxacin drug. Applied Clay Science, 190, 105586. https://doi.org/10.1016/j.clay.2020.105586
  • Song, J., Kook, M.-S., Kim, B.-H., Jeong, Y.-I., & Oh, K.-J. (2021). Ciprofloxacin-releasing ROS-sensitive nanoparticles composed of poly(Ethylene Glycol)/Poly(D, L-lactide-co-glycolide) for antibacterial treatment. Materials, 14(15), 4125. https://doi.org/10.3390/ma14154125
  • Sousa, W. R. D. N., Oliveira, A. R., Cruz Filho, J. F., Dantas, T. C. M., Santos, A. G. D., Caldeira, V. P. S., & Luz, G. E. (2018). Ciprofloxacin adsorption on ZnO supported on SBA-15. Water, Air, and Soil Pollution, 229(4), 125. https://doi.org/10.1007/s11270-018-3778-1
  • Steffensen, S. L., Vestergaard, M. H., Møller, E. H., Groenning, M., Alm, M., Franzyk, H., & Nielsen, H. M. (2016). Soft hydrogels interpenetrating silicone—A polymer network for drug-releasing medical devices. Journal of Biomedical Materials Research Part b: Applied Biomaterials, 104(2), 402–410. https://doi.org/10.1002/JBM.B.33371
  • Sun, D. D., & Lee, P. I. (2015). Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. Journal of Controlled Release, 211, 85–93. https://doi.org/10.1016/j.jconrel.2015.06.004
  • Sun, C.-Y., Qin, C., Wang, X.-L., & Su, Z.-M. (2013). Metal-organic frameworks as potential drug delivery systems. Expert Opinion on Drug Delivery, 10(1), 89–101. https://doi.org/10.1517/17425247.2013.741583
  • Takács-Novák, K., Józan, M., Hermecz, I., & Szász, G. (1992). Lipophilicity of antibacterial fluoroquinolones. International Journal of Pharmaceutics, 79(1–3), 89–96. https://doi.org/10.1016/0378-5173(92)90099-N
  • Takagi, T., Ramachandran, C., Bermejo, M., Yamashita, S., Yu, L. X., & Amidon, G. L. (2006). A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Molecular Pharmaceutics, 3(6), 631–643. https://doi.org/10.1021/mp0600182
  • Talan, D. A., Naber, K. G., Palou, J., & Elkharrat, D. (2004). Extended-release ciprofloxacin (Cipro XR) for treatment of urinary tract infections. International Journal of Antimicrobial Agents, 23(SUPPL. 1), 54–66. https://doi.org/10.1016/j.ijantimicag.2003.12.005
  • Terp, D. K., & Rybak, M. J. (1987). Ciprofloxacin. Drug Intelligence and Clinical Pharmacy, 21(7–8), 568–574. https://doi.org/10.1177/1060028087021007-801
  • Thai, T., Salisbury, B. H., & Zito, P. M. (2021). Ciprofloxacin. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK535454/
  • Thomson, C. J. (1999). The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: A 10 year perspective. Journal of Antimicrobial Chemotherapy, 43(suppl_1), 31–40. https://doi.org/10.1093/jac/43.suppl_1.31
  • Wechsler, M. E., Stephenson, R. E., Murphy, A. C., Oldenkamp, H. F., Singh, A., & Peppas, N. A. (2019). Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomedical Microdevices, 21(31), 1–15. https://doi.org/10.1007/S10544-019-0358-0
  • World Health Organization. (2021). World Health Organization Model List of Essential Medicines—22nd List.
  • Yang, K., Sun, Q., Xue, F., & Lin, D. (2011). Adsorption of volatile organic compounds by metal–organic frameworks MIL-101: Influence of molecular size and shape. Journal of Hazardous Materials, 195, 124–131. https://doi.org/10.1016/j.jhazmat.2011.08.020
  • Yun, Y. H., Lee, B. K., & Park, K. (2015). Controlled drug delivery: Historical perspective for the next generation. Journal of Controlled Release, 219, 2–7. https://doi.org/10.1016/j.jconrel.2015.10.005
  • Zhang, G.-F., Liu, X., Zhang, S., Pan, B., & Liu, M.-L. (2018a). Ciprofloxacin derivatives and their antibacterial activities. European Journal of Medicinal Chemistry, 146, 599–612. https://doi.org/10.1016/j.ejmech.2018.01.07
  • Zhang, Y., Huang, C., & Chang, J. (2018b). Ca-Doped mesoporous SiO2/dental resin composites with enhanced mechanical properties, bioactivity and antibacterial properties. Journal of Materials Chemistry B, 6(3), 477–486. https://doi.org/10.1039/C7TB02864D
  • Zhang, Y., Chang, M., Bao, F., Xing, M., Wang, E., Xu, Q., Huan, Z., Guo, F., & Chang, J. (2019). Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale, 11(13), 6315–6333. https://doi.org/10.1039/C8NR09818B