Current Data on Environmental Problems Due to Ionophore Antibiotics Used as Anticoccidial Drugs in Animal Production, and Proposal of New Research to Control Pollution by Means of Bio-Adsorbents and Nanotechnology

  1. Míguez-González, Ainoa
  2. Cela-Dablanca, Raquel
  3. Barreiro, Ana
  4. Castillo-Ramos, Ventura
  5. Sánchez-Polo, Manuel
  6. López-Ramón, María Victoria
  7. Fernández-Sanjurjo, María J.
  8. Álvarez-Rodríguez, Esperanza
  9. Núñez-Delgado, Avelino
Libro:
Planet Earth: Scientific Proposals to Solve Urgent Issues

ISBN: 9783031532078 9783031532085

Año de publicación: 2024

Páginas: 241-261

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-53208-5_11 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Álvarez, M. A., Francisco Orellana-García, M., López-Ramón, V., Rivera-Utrilla, J., & Sánchez-Polo, M. (2018). Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation. Arabian Journal of Chemistry, 11(4), 564–572. https://doi.org/10.1016/j.arabjc.2016.10.005
  • Álvarez, M. A., Ruidíaz-Martínez, M., Cruz-Quesada, G., Victoria López-Ramón, M., Rivera-Utrilla, J., Sánchez-Polo, M., & Mota, A. J. (2020). Removal of parabens from water by UV-driven advanced oxidation processes. Chemical Engineering Journal, 379, 122334. https://doi.org/10.1016/j.cej.2019.122334
  • Arikan, O. A., Mulbry, W., & Rice, C. (2016). The effect of composting on the persistence of four ionophores in dairy manure and poultry litter. Waste Management, 54, 110–117. https://doi.org/10.1016/j.wasman.2016.04.032
  • Aust, M. O., Thiele-Bruhn, S., Seeger, J., Godlinski, F., Meissner, R., & Leinweber, P. (2010). Sulfonamides leach from sandy loam soils under common agricultural practice. Water, Air, and Soil Pollution, 211, 143–156. https://doi.org/10.1007/s11270-009-0288-1
  • Bartelt-Hunt, S., Snow, D. D., Damon-Powell, T., & Miesbach, D. (2011). Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. Journal of Contaminant Hydrology, 123(3–4), 94–103. https://doi.org/10.1016/j.jconhyd.2010.12.010
  • Biswas, S., McGrath, J. M., & Sapkota, A. (2012). Quantification of ionophores in aged poultry litter using liquid chromatography tandem mass spectrometry. Journal of Environmental Science and Health, Part B, 47(10), 959–966. https://doi.org/10.1080/03601234.2012.706564
  • Boonsaner, M., & Hawker, D. W. (2010). Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Science of the Total Environment, 408(7), 1731–1737. https://doi.org/10.1016/j.scitotenv.2009.12.032
  • Boxall, A. B. A., Fogg, L. A., Blackwell, P. A., Blackwell, P., Kay, P., Pemberton, E. J., & Croxford, A. (2004). Veterinary medicines in the environment. In Reviews of environmental contamination and toxicology (Vol. 180). Springer. https://doi.org/10.1007/0-387-21729-0_1
  • Boxall, A. B. A., Johnson, P., Smith, E. J., Sinclair, C. J., Stutt, E., & Levy, L. S. (2006). Uptake of veterinary medicines from soils into plants. Journal of Agricultural and Food Chemistry, 54(6), 2288–2297. https://doi.org/10.1021/jf053041t
  • Butaye, P., Devriese, L. A., & Haesebrouck, F. (2003). Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clinical Microbiology Reviews, 16(2), 175–188. https://doi.org/10.1128/cmr.16.2.175-188.2003
  • Cao, V., Yunessnia Lehi, A., Bojaran, M., & Fattahi, M. (2020). Treatment of Lasalocid A, Salinomycin and Semduramicin as ionophore antibiotics in pharmaceutical wastewater by PAMAM-coated membranes. Environmental Technology & Innovation, 20, 101103. https://doi.org/10.1016/j.eti.2020.101103
  • Cela-Dablanca, R., Nebot, C., López, L. R., Ferández-Calviño, D., Arias-Estévez, M., Núñez-Delgado, A., Álvarez-Rodríguez, E., & Fernández-Sanjurjo, M. J. (2021a). Retention of the antibiotic cefuroxime onto agricultural and forest soils. Applied Sciences, 11, 4663. https://doi.org/10.3390/app11104663
  • Cela-Dablanca, R., Nebot, C., Rodríguez López, L., Fernández-Calviño, D., Arias-Estévez, M., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., & Álvarez-Rodríguez, E. (2021b). Efficacy of different waste and by-products from forest and food industries in the removal/retention of the antibiotic cefuroxime. Processes, 9, 1151. https://doi.org/10.3390/pr9071151
  • Cela-Dablanca, R., Barreiro, A., Rodríguez-López, L., Pérez-Rodríguez, P., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2022). Azithromycin adsorption onto different soils. Processes, 10(12), 2565. https://doi.org/10.3390/pr10122565
  • Cha, J., & Carlson, K. H. (2018). Occurrence of β-lactam and polyether ionophore antibiotics in lagoon water and animal manure. Science of the Total Environment, 640–641, 1346–1353. https://doi.org/10.1016/j.scitotenv.2018.05.391
  • Chapman, H. D., Jeffers, T. K., & Williams, R. B. (2010). Forty years of monensin for the control of coccidiosis in poultry. Poultry Science, 89(9), 1788–1801. https://doi.org/10.3382/ps.2010-00931
  • Chaves-Ulate, C., Granados-Chinchilla, F., & Rodríguez, C. (2021). Fertilization with poultry litter increases the abundance of antibiotic-resistant bacteria in tropical soil: A microcosm study. Water, Air, and Soil Pollution, 232, 402. https://doi.org/10.1007/s11270-021-05347-1
  • Conde-Cid, M., Álvarez-Esmorís, C., Paradelo-Núñez, R., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Álvarez-Rodríguez, E., Fernández-Sanjurjo, M. J., & Núñez-Delgado, A. (2018a). Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). Journal of Cleaner Production, 197(1), 491–500. https://doi.org/10.1016/j.jclepro.2018.06.217
  • Conde-Cid, M., Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Díaz-Raviña, M., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., & Álvarez-Rodríguez, E. (2018b). Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark. Science of the Total Environment, 635, 1520–1529. https://doi.org/10.1016/j.scitotenv.2018.04.233
  • Conde-Cid, M., Fernández-Calviño, D., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., Álvarez-Rodríguez, E., & Arias-Estévez, M. (2019a). Adsorption/desorption and transport of sulfadiazine, sulfachloropyridazine, and sulfamethazine, in acid agricultural soils. Chemosphere, 234, 978–986. https://doi.org/10.1016/j.chemosphere.2019.06.121
  • Conde-Cid, M., Nóvoa-Muñoz, J. C., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Arias-Estévez, M., & Álvarez-Rodríguez, E. (2019b). Experimental data and modeling for sulfachloropyridazine and sulfamethazine adsorption/desorption on agricultural acid soils. Microporous and Mesoporous Materials, 288, 109601. https://doi.org/10.1016/j.micromeso.2019.109601
  • Conde-Cid, M., Ferreira-Coelho, G., Arias-Estévez, M., Álvarez-Esmorís, C., Nóvoa-Muñoz, J. C., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., & Álvarez-Rodríguez, E. (2019c). Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on pine bark, oak ash and mussel shell. Journal of Environmental Management, 250, 109509. https://doi.org/10.1016/j.jenvman.2019.109509
  • Conde-Cid, M. G., Ferreira-Coelho, M.-E., Fernández-Calvinho, D., Núñez-Delgado, A., Álvarez-Rodríguez, E., & Fernández-Sanjurjo, M. J. (2020). Adsorption/desorption of three tetracycline antibiotics on different soils in binary competitive systems. Journal of Environmental Management, 262, 110337. https://doi.org/10.1016/j.jenvman.2020.110337
  • Conde-Cid, M., Cela-Dablanca, R., Ferreira-Coelho, G., Fernández-Calviño, D., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Arias-Estévez, M., & Álvarez-Rodríguez, E. (2021). Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: Pine bark, “oak ash” and mussel shell. Environmental Research, 195, 110814. https://doi.org/10.1016/j.envres.2021.110814
  • Dalkmann, P., Broszat, M., Siebe, C., Willaschek, E., Sakinc, T., Huebner, J., Amelung, W., Grohmann, E., & Siemens, J. (2012). Accumulation of pharmaceuticals, enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in Central Mexico. PLoS ONE, 7(9), e45397. https://doi.org/10.1371/journal.pone.0045397
  • Du, L., & Liu, W. (2012). Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for Sustainable Development, 32, 309–327. https://doi.org/10.1007/s13593-011-0062-9
  • Eggen, T., Asp, T. N., Grave, K., & Hormazabal, V. (2011). Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere, 85(1), 26–33. https://doi.org/10.1016/j.chemosphere.2011.06.041
  • European Medicines Agency (EMEA). (2008). EMEA/CVMP/ERA/418282/2005-Rev.1; Nov.
  • Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399, 251–275. https://doi.org/10.1007/s00216-010-4300-9
  • Figueroa-Diva, R. A., Vasudevan, D., & MacKay, A. A. (2010). Trends in soil sorption coefficients within common antimicrobial families. Chemosphere, 79(8), 786–793. https://doi.org/10.1016/j.chemosphere.2010.03.017
  • Fontecha-Cámara, M. A., Moreno-Castilla, C., López-Ramón, M. V., & Álvarez, M. A. (2016). Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions. Applied Catalysis b: Environmental, 196, 207–215. https://doi.org/10.1016/j.apcatb.2016.05.032
  • Furtula, V., Farrell, E. G., Diarrassouba, F., Rempel, H., Pritchard, J., & Diarra, M. S. (2010). Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poultry Science, 89(1), 180–188. https://doi.org/10.3382/ps.2009-00198
  • Glaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and UV-radiation. Ozone: Science Engineering, 9, 335–352.
  • Hansen, M., Krogh, K. A., Björklund, E., Halling-Sørensen, B., & Brandt, A. (2009). Environmental risk assessment of ionophores. TrAC Trends in Analytical Chemistry, 28(5), 534–542. https://doi.org/10.1016/j.trac.2009.02.015
  • Iglesias, A., Nebot, C., Miranda, J. M., Vázquez, B. I., & Cepeda, A. (2012). Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tandem mass spectrometry. Environmental Science and Pollution Research, 19, 3235–3249. https://doi.org/10.1007/s11356-012-0830-3
  • Iglesias, A., Nebot, C., Vázquez, B. I., Miranda, J. M., Franco-Abuín, C. M., & Cepeda, A. (2014). Detection of veterinary drug residues in surface waters collected nearby farming areas in Galicia, North of Spain. Environmental Science and Pollution Research, 21, 2367–2377. https://doi.org/10.1007/s11356-013-2142-7
  • Junge, T., Claßen, N., Schäffer, A., & Schmidt, B. (2012). Fate of the veterinary antibiotic 14C-difloxacin in soil including simultaneous amendment of pig manure with the focus on non-extractable residues. Journal of Environmental Science and Health, Part B, 47(9), 858–868. https://doi.org/10.1080/03601234.2012.693868
  • Kart, A., & Bilgili, A. (2008). Ionophore antibiotics: Toxicity, mode of action and neurotoxic aspect of carboxylic ionophores. Journal of Animal and Veterinary Advances, 7, 748–751.
  • Keeton, S. T. N., & Navarre, C. B. (2018). Coccidiosis in large and small ruminants. Veterinary Clinics of North America: Food Animal Practice, 34(1), 201–208. https://doi.org/10.1016/j.cvfa.2017.10.009
  • Khadiran, T., Hussein, M. Z., Zainal, Z., & Rusli, R. (2015). Textural and chemical properties of activated carbon prepared from tropical peat soil by chemical activation method. BioResources, 10(1), 986–1007.
  • Kim, S. C., & Carlson, K. (2006). Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed. Water Research, 40(13), 2549–2560. https://doi.org/10.1016/j.watres.2006.04.036
  • King, L. D., Safley, L. M., & Spears, J. W. (1983). A greenhouse study on the response of corn (Zea mays L.) to manure from beef cattle fed antibiotics. Agricultural Wastes, 8(3), 185–190. https://doi.org/10.1016/0141-4607(83)90116-6
  • López-Ramón, M. V., Fontecha-Cámara, M. A., Álvarez-Merino, M. A., & Moreno-Castilla, C. (2007). Removal of diuron and amitrole from water under static and dynamic conditions using activated carbons in form of fibers, cloth, and grains. Water Research, 41(13), 2865–2870. https://doi.org/10.1016/j.watres.2007.02.059
  • López-Ramón, M. V., Ocampo-Pérez, R., Bautista-Toledo, M. I., Rivera-Utrilla, J., Moreno-Castilla, C., & Sánchez-Polo, M. (2019a). Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. Science of the Total Environment, 669, 767–776. https://doi.org/10.1016/j.scitotenv.2019.03.125
  • López-Ramón, M. V., Rivera-Utrilla, J., Sánchez-Polo, M., Polo, A. M. S., Mota, A. J., Orellana-García, F., & Álvarez, M. A. (2019b). Photocatalytic oxidation of diuron using nickel organic xerogel under simulated solar irradiation. Science of the Total Environment, 650(1), 1207–1215. https://doi.org/10.1016/j.scitotenv.2018.09.113
  • Mateus, L., Moreno-Castilla, C., López-Ramón, M. V., Cortés, F. B., Álvarez, M. Á., Medina, O. E., Franco, C. A., & Yebra-Rodríguez, A. (2021). Physicochemical characteristics of calcined MnFe2O4 solid nanospheres and their catalytic activity to oxidize para-nitrophenol with peroxymonosulfate and n-C7 asphaltenes with air. Journal of Environmental Management, 281, 111871. https://doi.org/10.1016/j.jenvman.2020.111871
  • Mazlum, Z., Pickles, R. W., Pradella, G., & Pagnani, R. (1985). Interaction between monensin, narasin or salinomycin and the antibiotics erythromycin, chloramphenicol or tylosin in broiler chicks. Clinica Veterinaria, 108, 95–104.
  • Mohammadzadeh, M., & Leiviskä, T. (2023). Iron-modified peat and magnetite-pine bark biosorbents for levofloxacin and trimethoprim removal from synthetic water and various pharmaceuticals from real wastewater. Industrial Crops and Products, 195, 116491. https://doi.org/10.1016/j.indcrop.2023.116491
  • Moreno-Castilla, C., Carrasco-Marı́n, F., Victoria López-Ramón, M., & Alvarez-Merino, M. A. (2001). Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon, 39(9), 1415–1420. https://doi.org/10.1016/S0008-6223(00)00268-2
  • Ocampo-Pérez, R., Orellana-Garcia, F., Sánchez-Polo, M., Rivera-Utrilla, J., Velo-Gala, I., López-Ramón, M. V., & Alvarez-Merino, M. A. (2013). Nitroimidazoles adsorption on activated carbon cloth from aqueous solution. Journal of Colloid and Interface Science, 401, 116–124. https://doi.org/10.1016/j.jcis.2013.03.038
  • Olejnik, M., Szprengier-Juszkiewicz, T., & Jedziniak, P. (2009). Multi-residue confirmatory method for the determination of twelve coccidiostats in chicken liver using liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1216(A), 8141–8148. https://doi.org/10.1016/j.chroma.2009.04.097
  • Ozaki, N., Bester, K., Moldrup, P., Henriksen, K., & Komatsu, T. (2011). Photodegradation of the synthetic fragrance OTNE and the bactericide triclosan adsorbed on dried loamy sand—Results from models and experiments. Chemosphere, 83(11), 1475–1479. https://doi.org/10.1016/j.chemosphere.2011.03.006
  • Pan, M., & Chu, L. M. (2017). Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution, 231(1), 829–836. https://doi.org/10.1016/j.envpol.2017.08.051
  • Peña-Rodríguez, S., Bermúdez-Couso, A., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2013). Mercury removal using ground and calcined mussel shell. Journal of Environmental Sciences, 25(12), 2476–2486. https://doi.org/10.1016/S1001-0742(12)60320-9
  • Peralta, M. E., Ocampo, S., Funes, I. G., Onaga Medina, F., Parolo, M. E., & Carlos, L. (2020). Nanomaterials with tailored magnetic properties as adsorbents of organic pollutants from wastewaters. Inorganics, 8, 24. https://doi.org/10.3390/inorganics8040024
  • Polo, A. M. S., Lopez-Peñalver, J. J., Rivera-Utrilla, J., Von Gunten, U., & Sánchez-Polo, M. (2017). Halide removal from waters by silver nanoparticles and hydrogen peroxide. Science of the Total Environment, 607–608, 649–657. https://doi.org/10.1016/j.scitotenv.2017.05.144
  • Polo, A. M. S., Lopez-Peñalver, J. J., Sánchez-Polo, M., Rivera-Utrilla, J., López-Ramón, M. V., & Rozalén, M. (2020). Halide removal from water using silver doped magnetic-microparticles. Journal of Environmental Management, 253, 109731. https://doi.org/10.1016/j.jenvman.2019.109731
  • Race, M., Ferraro, A., Galdiero, E., Guida, M., Núñez-Delgado, A., Pirozzi, F., Siciliano, A., & Fabbricino, M. (2020). Current emerging SARS-CoV-2 pandemic: Potential direct/indirect negative impacts of virus persistence and related therapeutic drugs on the aquatic compartments. Environmental Research, 188, 109808. https://doi.org/10.1016/j.envres.2020.109808
  • Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P. M., Alvim-Ferraz, M. C. M., & Dias, J. M. (2011). Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials., 187(1–3), 1–23. https://doi.org/10.1016/j.jhazmat.2011.01.033
  • Rodríguez-González, L., Núñez-Delgado, A., Álvarez-Rodríguez, E., Díaz-Raviña, M., Arias-Estévez, M., Fernández-Calviño, D., & Vanesa Santás-Miguel, V. (2023). Direct toxicity of six antibiotics on soil bacterial communities affected by the addition of bio-adsorbents. Environmental Pollution, 322, 121161. https://doi.org/10.1016/j.envpol.2023.121161
  • Rosendahl, I., Siemens, J., Groeneweg, J., Linzbach, E., Laabs, V., Herrmann, C., Vereecken, H., & Amelung, W. (2011). Dissipation and sequestration of the veterinary antibiotic sulfadiazine and its metabolites under field conditions. Environmental Science & Technology, 45(12), 5216–5222. https://doi.org/10.1021/es200326t
  • Rosendahl, I., Siemens, J., Kindler, R., Groeneweg, J., Zimmermann, J., Czerwinski, S., Lamshöft, M., Laabs, V., Wilke, B. M., Vereecken, H., & Amelung, W. (2012). Persistence of the fluoroquinolone antibiotic difloxacin in soil and lacking effects on nitrogen turnover. Journal of Environmental Quality, 41, 1275–1283. https://doi.org/10.2134/jeq2011.0459
  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026
  • Sassman, S. A., & Lee, L. S. (2007). Sorption and degradation in soils of veterinary ionophore antibiotics: Monensin and lasalocid. Environmental Toxicology and Chemistry, 26, 1614–1621. https://doi.org/10.1897/07-073R.1
  • Sun, P., Barmaz, D., Cabrera, M. L., Pavlostathis, S. G., & Huang, C. H. (2013). Detection and quantification of ionophore antibiotics in runoff, soil and poultry litter. Journal of Chromatography A, 1312, 10–17. https://doi.org/10.1016/j.chroma.2013.08.044
  • Thompson, T. S., Noot, D. K., Forrest, F., van den Heever, J. P., Kendall, J., & Keenliside, J. (2009). Large volume injection for the direct analysis of ionophores and avermectins in surface water by liquid chromatography-electrospray ionization tandem mass spectrometry. Analytica Chimica Acta, 633(1), 127–135. https://doi.org/10.1016/j.aca.2008.11.024
  • Torre, A., Iglesias, I., Carballo, M., Ramírez, P., & Muñoz, M. J. (2012). An approach for mapping the vulnerability of European Union soils to antibiotic contamination. Science of the Total Environment, 414, 672–679. https://doi.org/10.1016/j.scitotenv.2011.10.032
  • Watanabe, N., Harter, T. H., & Bergamaschi, B. A. (2008). Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms. Journal of Environmental Quality, 37, S78–S85. https://doi.org/10.2134/jeq2007.0371
  • Wehrhan, A., Kasteel, R., Simunek, J., Groeneweg, J., & Vereecken, H. (2007). Transport of sulfadiazine in soil columns—Experiments and modelling approaches. Journal of Contaminant Hydrology, 89(1–2), 107–135. https://doi.org/10.1016/j.jconhyd.2006.08.002
  • Žižek, S., Hrženjak, R., Kalcher, G. T., Šrimpf, K., Šemrov, N., & Zidar, P. (2011). Does monensin in chicken manure from poultry farms pose a threat to soil invertebrates? Chemosphere, 83(4), 517–523. https://doi.org/10.1016/j.chemosphere.2010.12.058