Efectos del incremento de la erosividad de lluvia en la estimación de pérdida de suelo (RUSLE) en el periodo 1997-2018comparación en dos cuencas mediterráneas con diferentes condiciones pluviométricas

  1. Sillero Medina, José Antonio 1
  2. Martínez Murillo, Juan Francisco 1
  3. Ruiz Sinoga, José Damián 1
  1. 1 Universidad de Málaga
    info

    Universidad de Málaga

    Málaga, España

    ROR https://ror.org/036b2ww28

Revista:
BAGE. Boletín de la Asociación Española de Geografía

ISSN: 0212-9426 2605-3322

Año de publicación: 2021

Número: 89

Tipo: Artículo

DOI: 10.21138/BAGE.3092 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: BAGE. Boletín de la Asociación Española de Geografía

Objetivos de desarrollo sostenible

Resumen

En la Cordilleras Béticas litorales, estudios recientes indican un incremento de la erosividad de la precipitación. Así, es necesario avanzar en la estimación de la pérdida de suelo por erosión hídrica, principal agente geomorfológico en dicha zona. Este estudio aplica la ecuación RUSLE en dos cuencas de media montaña, con diferentes condiciones pluviométricas, durante el periodo 1997-2018; ambas cuencas presentan rasgos ecogeomorfológicos propios de la montaña mediterránea. En la aplicación, se han introducido cambios metodológicos en el cálculo de la estimación de pérdida de suelo y su validación: intensidad de lluvia diezminutal (I10), en vez de 30 minutos para el factor R; estimación de la cubierta vegetal para el factor C por medio del NDVI; y validación mediante inventario en campo de los componentes superficiales del suelo. Los resultados arrojan diferencias entre ambas cuencas dadas sus diferentes condiciones ecogeomorfológicas. La precisión dada por la I10 permite valorar mejor la estimación de pérdida de suelo y sus cambios espacio-temporales. La validación con componentes superficiales del suelo es mejor en la cuenca con condiciones ecogeomorfológicas más bióticas. Este trabajo tiene evidente utilidad para detección de zonas prioritarias ante la ejecución de políticas de reforestación y control de la erosión y generación de avenidas.

Referencias bibliográficas

  • Abu Hammad, A., Lundekvam, H., & Børresen T. (2004). Adaptation of RUSLE in the eastern part of the Mediterranean región. Environmental Management, 34–6, 829–841. http://dx.doi.org/10.1007/s00267-003-0296-7
  • Almorox, J., López Bermúdez, F., & Rafaelli, S. (2010). La degradación de los suelos por erosion hídrica: métodos de estimación. Murcia: Universidad de Murcia, Servicio de Publicaciones, Murcia.
  • Amsalu, T., & Mengaw, A. (2014). GIS Based Soil Loss Estimation Using RUSLE Model: The Case of Jabi Tehinan Woreda, ANRS, Ethiopia. Natural Resources, 5, 616-626. http://dx.doi.org/10.4236/nr.2014.511054
  • Angulo-Martínez, M., & Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: a comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379, 111–121. http://dx.doi.org/10.1016/j.jhydrol.2009.09.051.
  • Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H., & Sarah, P. (2008). Analysis of soil surface component patterns affecting runoff generation. An example of methods applied to Mediterranean hillslopes in Alicante (Spain). Geomorphology, 101, 595–606. https://doi.org/10.1016/j.geomorph.2008.03.001
  • Avellanas, J.M.R., Velilla, F.J.V., Villas, D.B. & Martorell, J.A. (1999). Efecto del incendio forestal sobre la autosucesión vegetal y erosión, en los montes de Castejón de Valdejasa (Zaragoza). Geórgica: Revista del Espacio Rural, 7, 55–68.
  • Ballabio, C., Borrelli, P., Spinoni, J., Meusburger, K., Michaelides, S., Beguería, S., ... Panagos, P. (2017). Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 579, 1298–1315. http://dx.doi.org/10.1016/j.scitotenv.2016.11.123
  • Boardman, J., & Poesen, J. (2006). Soil erosion in Europe: major processes, causes and consequences. In J. Boardman, J. Poesen (Eds.), Soil Erosion in Europe. Chichester: John Wiley & Sons, Ltd. http://dx.doi.org/10.1002/0470859202.ch36
  • Borrelli, P., Diodato, N., & Panagos, P. (2016). Rainfall erosivity in Italy: a national scale spatiotemporal assessment. International Journal of Digital Earth, 9, 835-850. http://dx.doi.org/10.1080/17538947.2016.1148203
  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., ... Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communicarions, 8(2013), 1-13. https://doi.org/10.1038/s41467-017-02142-7
  • Brooks, A., Spencer, J., Borombovits, D., Pietsch, T., & Olley, J. (2014). Measured hillslope erosion rates in the wet-dry tropics of Cape York, northern Australia: Part 2, RUSLE-based modeling significantly over-predicts hillslope sediment production. Catena, 122, 1-17. https://doi.org/10.1016/j.catena.2014.06.002
  • Camarasa-Belmonte, A.M., Rubio, M., & Salas, J. (2020). Rainfall events and climate change in Mediterranean environments: an alarming shift from resource to risk in Eastern Spain. Natural Hazards, 103, 423–445. https://doi.org/10.1007/s11069-020-03994-x
  • Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52, 59-68.
  • Consejería de Medio Ambiente (1984–1990). Proyecto Hydre: seguimiento de los recursos hídricos al servicio de las políticas regionales de la agricultura y del medio ambiente. Junta de Andalucía. Retrieved from http://www.juntadeandalucia.es/medioambiente/site/portalweb/menuitem.7e1cf46ddf59bb227a9ebe205510e1ca/?vgnextoid=d94bf36517057010VgnVCM1000000624e50aRCRD&vgnextchannel=4836a7aaaf4f4310VgnVCM2000000624e50aRCRD
  • D'Asaro, F., D'Agostino, L., & Bagarello, V., (2007). Assessing changes in rainfall erosivity in Sicily during the twentieth century. Hydrological Processes, 21, 2862–2871. http://dx.doi.org/10.1002/hyp.6502
  • Diodato, N. (2006). Predicting RUSLE (Revised Universal Soil Loss Equation) monthly erosivity index from readily available rainfall data in Mediterranean area. Environmentalist, 26, 63–70. http://dx.doi.org/10.1007/s10669-006-5359-x
  • Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), 441-453. http://dx.doi.org/10.1080/01431161.2013.871081
  • Eekhout, J. P. C., & De Vente, J. (2020). How soil erosion model conceptualization affects soil loss projections under climate change. Progress in Physical Geography, 44(2), 212-232. https://doi.org/10.1177/0309133319871937
  • Efthimiou, N. (2016). Performance of the RUSLE in Mediterranean Mountainous Catchments. Environment Processes, 3, 1001-1019. https://doi.org/10.1007/s40710-016-0174-y
  • FAO (1984). Land evaluation for forestry (Forestry Paper nº 48). Rome. Retrieved from Retrieved from http://www.fao.org/documents#querystring=cXVlcnk9TGFuZCtldmFsdWF0aW9uK2Zvcitmb3Jlc3RyeSZpbm1ldGElM0F5ZWFyZnJvbT0xOTg0JmVuZHN0cmluZz0x
  • FAO (2011). The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW): Managing Systems at Risk. Rome: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/3/i1688e/i1688e00.htm
  • FAO (2015). The Status of the World’s Soil Resources (Main Report). Rome: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/documents/card/es/c/c6814873-efc3-41db-b7d3-2081a10ede50/
  • Feng, T., Chen, H., Polyakov, V. O., Wang, K., Zhang, X., & Zhang, W. (2016). Soil erosion rates in two karst peak-cluster depression basins of northwest Guangxi, China: Comparison of the RUSLE model with 137Cs measurements. Geomorphology, 253, 217-224. http://dx.doi.org/10.1016/j.geomorph.2015.10.013
  • Ferre-Bueno, E., & Senciales, J. M. (1991). Estimaciones de la Erosión por Escorrentía Superficial en la Zona Suroriental de la Provincia de Málaga. Baetica, 13, 19–34.
  • Ferreira, V., & Panagopoulos, T. (2014). Seasonality of Soil Erosion Under Mediterranean Conditions at the Alqueva Dam Watershed. Environmental Management, 54, 67–83. http://dx.doi.org/10.1007/s00267-014-0281-3
  • García-Ruiz, J.M., Nadal-Romero, E., Lana-Renault, N., Beguería, S. (2011). Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology, 198, 20–36. http://dx.doi.org/10.1016/j.geomorph.2013.05.023
  • Guitián, F., & Carballas, T. (1976). Técnicas de análisis de suelos. Santiago: Pico-Sacro.
  • Hoyos, N., Waylen, P. R., & Jaramillo, A. (2005). Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. Journal of Hydrology, 314, 177–191. http://dx.doi.org/10.1016/j.jhydrol.2005.03.014
  • Hueso-González, P., Ruiz-Sinoga, J.D., Martínez-Murillo, J.F., & Lavee, H. (2015). Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation. Geomorphology, 228, 796–804. http://dx.doi.org/10.1016/j.geomorph.2014.10.033
  • Jardí, M.; Cabanillas, M.; Ferrando, C. & Peña-Rabadán, J.C. (1996). Impacto de las Pistas Forestales en Medios Frágiles Mediterráneos (1996). El Caso del Turó de Burriach (Maresme Barcelona-España). Cadernos do laboratorio xeolóxico de Laxe, 21, 103-121.
  • Karamesouti, M., Petropoulos, G. P., Papanikolaou, I. D., Kairis, O., & Kosmas, K. (2014). Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: Comparison & implications. Geoderma, 261, 44-58. http://dx.doi.org/10.1016/j.geoderma.2015.06.025
  • Khademalrasoul, A., & Amerikhah, H. (2020). Assessment of soil erosion patterns using RUSLE model and GIS tools (case study: the border of Khuzestan and Chaharmahal Province, Iran). Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-00931-6
  • Kinnell, P. I. A. (2010). Event soil loss, runoff and the Universal Soil Loss Equation family of models: a review. Journal of Hydrology, 385, 384-397. http://dx.doi.org/10.1016/j.jhydrol.2010.01.024
  • Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool. Geosciences, 9, 147-165. http://dx.doi.org/10.3390/geosciences9040147
  • Kouli M., Soupios P., & Vallianatos F. (2009). Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57, 483-497. https://doi.org/10.1007/s00254-008-1318-9
  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627. http://dx.doi.org/http://10.1126/science.1097396
  • Larsen, I. J., & MacDonald, L. H. (2007). Predicting postfire sediment yields at the hillslope scale: Testing RUSLE and Disturbed WEPP. Water Resources Research, 43(11), W11412. https://doi.org/10.1029/2006WR005560
  • López Bermúdez, F. (1986). Evaluación de la erosión hídrica en las áreas receptoras de los embalses de la Cuenca del Segura. Applicación de la USLE. In Estudios Sobre Geomorfología del Sur de España (pp. 93-99). University of Murcia: Murcia, Spain.
  • López-Vicente, M., & Navas, A. (2009). Predicting soil erosion with RUSLE in mediterranean agricultural systems at catchment scale. Soil Science, 174(5), 272-282. https://doi.org/10.1097/SS.0b013e3181a4bf50
  • López-Vicente, M., Lana-Renault, N., García-Ruiz, J. M., & Navas, A. (2011). Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. Journal of Soils and Sediments, 11(8), 1440-1455. https://doi.org/10.1007/s11368-011-0428-2
  • Lu, H., Prosser, I. P., Moran, C. J., Gallant, J.C., Priestley, G., & Stevenson, J. G. (2003). Predicting sheetwash and rill erosion over the Australian continent. Australian Journal of Soil Research, 41(6), 1037-1062. https://doi.org/10.1071/SR02157
  • Marañés, A., Sánchez, J. A., De Haro, S., Sánchez, S. T., & Lozano, F. J. (1994). Análisis de suelo, metodología e interpretación. Almería: Universidad de Almería.
  • Martínez-Murillo, J.F., & Ruiz-Sinoga, J.D. (2009a). Ecogeomorphological system response variabiability to the 2004-06 drought variability along a climatic gradient of the Littoral Betic Range (southern Spain). Geomorphology, 109, 351-362.
  • Meusburger, K., Steel, A., Panagos, P., Montanarella, L., & Alewell, C. (2012). Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences, 16, 167–177. http://dx.doi.org/10.5194/hess-16-167-2012
  • Ministerio de Medio Ambiente (2007). Inventario Nacional de Erosión de Suelos (2002-2012). Andalucía, Málaga: Dirección General para la Biodiversidad.
  • Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the national Academy of Sciences of the United States of America, 104, 13268–13272. https://doi.org/10.1073/pnas.0611508104
  • Moore, I. D., & Burch, G. J. (1986). Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50(5), 1294–1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x
  • Morgan, R. P. C. & Nearing, M. A. (2011). Handbook of Erosion Modelling. New Jersey: Wiley-Blackwell.
  • Morgan, R. P. C. (2006). Soil erosion and conservation. New Jersey: Wiley-Blackwell.
  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A, Auerswald, K., & Styczen, M. E. (1998).The European soil erosion model (EUROSEM): A Dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Land forms, 23(6), 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  • Nearing, M. A. (2013). Soil Erosion and Conservation. In J. Wainwright & M. Mulligan (Eds.), Environmental Modelling: Finding Simplicity in Complexity (pp. 365–378). New York: Wiley-Blackwell.
  • Nearing, M. A., Yin, S. Q., Borrelli, P., & Polyakov, V. O. (2017). Rainfall erosivity: An historical review. Catena, 157, 357-362. http://dx.doi.org/10.1016/j.catena.2017.06.004
  • Nunes, A. N., Lourenço, L., Vieira, A., & Bento-Gonçalves, A. (2016). Precipitation and erosivity in Southern Portugal: seasonal variability and trends (1950–2008). Land Degradation & Development, 27, 211–222. http://dx.doi.org/10.1002/ldr.2265
  • Oldeman, L. (1994). The Global Extent of Soil Degradation. En: D. J. Greenland & I. Szabolcs (Eds.), Soil Resilience and Sustainable Landuse (pp. 19–36). Wallingford: CAB International.
  • Pacheco, H. A., Cevalleros, R. X., & Vinces, C. J. (2019). Cálculo del factor C de la RUSLE, en la cuenca del río Carache, Trujillo-Venezuela usando imágenes del Satélite Miranda VRSS-1. Espacios, 40(3), 6. Retrieved from http://www.revistaespacios.com/a19v40n03/19400306.html
  • Páez, M. L. (1980). Contribución al estudio de la precipitación como factor de erosión en condiciones tropicales (Tesis de Ms Sci. Postgrado en Ciencias del Suelo, Universidad Central De Venezuela - Nucleo Maracay, Venezuela). Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=GREYLIT.xis&method=post&formato=2&cantidad=1&expresion=mfn=007424
  • Panagos, P., Ballabio, C., Borrelli, P., & Meusburger, K. (2016b). Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena, 137, 161-172. http://dx.doi.org/10.1016/j.catena.2015.09.015
  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger.K., Montanarella, L., & Alewell. C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438-447. http://dx.doi.org/10.1016/j.envsci.2015.08.012
  • Panagos, P., Imeson, A., Meusburger.K., Borrelli, P., Poesen, J., & Alewell. C. (2016a). Soil conservation in Europe: wish or reality? Land Degradation & Development, 27, 1547-1551. http://dx.doi.org/10.1002/ldr.2538
  • Parras-Alcántara, L., Lozano-García, B., Keesstra, S., Cerdà, A., & Brevik, E. C. (2016). Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils. Science of the Total Environment, 571, 498-506. http://dx.doi.org/10.1016/j.scitotenv.2016.07.016
  • Poesen, J., & Lavee, H. (1994). Rock fragments in top soils: significance and processes. Catena, 23, 1-28.
  • Rawat, K.S., & Singh, S. K. (2018). Appraisal of Soil Conservation Capacity Using NDVI Model-Based C Factor of RUSLE Model for a Semi Arid Ungauged Watershed: a Case Study. Water Conservation Science and Engineering, 3, 47-58. https://doi.org/10.1007/s41101-018-0042-x
  • Renard K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington DC: U.S. Department of Agriculture, Agricultural Research Service.
  • Renschler, C. S., & Harbor, J. (2002). Soil erosion assessment tools from point to regional scales - the role of geomorphologists in land management research and implementation. Geomorphology, 47(2–4), 189-209. https://doi.org/10.1016/S0169-555X(02)00082-X
  • Reynolds, W. D., Elrick, D. E., Youngs E. G., Amoozegar A., Booltink H. W. G., & Bouma, J. (2002). Saturated and field-saturated water flow parameters. In Dane & G.C. Topp (Eds.), Methods of Soil Analysis. Part 4 Physical Methods (pp. 797-878). Madison: SSSA.
  • Risse, L. M., Nearing, M. A., Laflen, J. M., & Nicks, A. D. (1993). Error assessment in the universal soil loss equation. Soil Science Society of America Journal, 57, 825. https://doi.org/10.2136/sssaj1993.03615995005700030032x
  • Rodrigo Comino, J., Ruiz Sinoga, J.D., Senciales González, J.M., Guerra-Merchán, A., Seeger, M., & Ries, J.B., (2016). High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena, 145, 274-284.
  • Ruiz Sinoga, J.D., & Martinez Murillo, J.F. (2009b). Hydrological response of abandoned agricultural soils along a climatological gradient on metamorphic parent material in southern Spain. Earth Surface Process. Landforms, 34, 2047–2056. https://doi.org/10.1002/esp.1890
  • Ruiz-Sinoga, J. D., & Romero-Díaz, A. (2010). Soil degradation factors along a Mediterranean pluviometric gradient in Southern Spain. Geomorphology, 118, 359-368. https://doi.org/10.1016/j.geomorph.2010.02.003
  • Ruiz-Sinoga, J. D., Martínez-Murillo, J. F., Gabarrón-Galeote, M. A., & García-Marín, R. (2010). Effects of exposure, scrub position, and soil surface components on the hydrological response in small plots in southern Spain. Ecohydrology, 3, 402-412. https://doi.org/10.1002/eco.159
  • Ruiz Sinoga , J.D., Romero Diaz, A., Martínez Murillo, J.F., & Gabarrón Galeote, M.A. (2015a). Incidencia de la dinámica pluviométrica en la degradación del suelo. Sur de España. Boletín de la Asociación de Geógrafos Españoles, (68), 177-204.
  • Shaksby, R. A. (2011). Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews, 105, 71-100.
  • Sillero-Medina, J. A., Hueso-González, P., & Ruiz-Sinoga, J. D. (2019). La precipitación geomorfológica como elemento clave en el modelado del paisaje mediterráneo. Boletín de la Asociación de Geógrafos Españoles, (82), 1-40. http://dx.doi.org/10.21138/bage.2780
  • Sillero-Medina, J. A., Pérez-González, M. E., Martínez-Murillo, & J. F., Ruiz-Sinoga, J. D. (2020a). Factors affecting eco-geomorphological dynamics in two contrasting Mediterranean environments. Geomorphology, 352. https://doi.org/10.1016/j.geomorph.2019.106996
  • Sillero-Medina, J. A., Hueso-González, P., & Ruiz-Sinoga, J. D. (2020b). Differences in the Soil Quality Index for Two Contrasting Mediterranean Landscapes in Southern Spain. Land, 9(11), 405. https://doi.org/10.3390/land9110405
  • Smith, H. J. (1999). Application of empirical soil loss models in southern Africa: A review. South African Journal of Plant and Soil, 16, 158-163. https://doi.org/10.1080/02571862.1999.10635003
  • Tejera-Gimeno, R., García-Robredo, F., & García-Díaz, R. (2006). Pérdida tolerable de suelo: modelo para su estimación en la ordenación de cuencas hidrográficas. Ingeniería hidráulica en México, 4, 33-41.
  • Terranova, O. G., & Gariano, S. L. (2015). Regional investigation on seasonality of erosivity in the Mediterranean environment. Environmental Earth Sciences, 73, 311–324. https://doi.org/10.1007/s12665-014-3426-z
  • Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 112(2009), 228-245. https://doi.org/10.1016/j.geomorph.2009.06.009
  • Trabucchi, M., Puente, C., Comin, F. A., Olague, G., & Smith, S. V. (2012). Mapping erosion risk at the basin scale in a Mediterranean environment with opencast coal mines to target restoration actions. Regional Environmental Change, 12(4), 675-687. https://doi.org/10.1007/s10113-012-0278-5
  • Van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe. Luxembourg: Office for Official Publications of the European Communities. Retrieved from https://esdac.jrc.ec.europa.eu/content/soil-erosion-risk-assessment-europe
  • Van der Knijff, M., Jones, R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy. Luxembourg: Office for Official Publications of the European Communities. https://esdac.jrc.ec.europa.eu/content/soil-erosion-risk-assessment-italy
  • Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., ... Merckx, R. (2007). The impact of agricultural soil erosion on the global carbon cycle. Science, 318, 626-629. https://doi.org/10.1126/science.1145724
  • Van Remortel, R. D., Maichle, R. W., & Hickey, R. J. (2004). Computing the LS factor for the revised universal soil loss equation through array based slope processing of digital elevation data using a C++ executable. Computers & Geosciences, 30(9-10), 1043-1053. https://doi.org/10.1016/j.cageo.2004.08.001
  • Vieira, D. C. S., Serpa, D., Nunes, J. P. C., Neves, R., & Keizer, J. J. (2018). Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environmental Research, 165, 365-378. https://doi.org/10.1016/j.envres.2018.04.029
  • Walling, D. E. (2013). The evolution of sediment source fingerprinting investigations in fluvial systems. Journal of Soil and Sediments, 13, 1658-1675. https://doi.org/10.1007/s11368-013-0767-2
  • Wang, G., Gertner, G., Singh, V., Shinkareva, S., Parysow, P., & Anderson, A. (2002). Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil loss equation: a case study of the rainfall–runoff erosivity R factor. Ecological Modelling, 153, 143-155. http://dx.doi.org/10.1016/S0304-3800(01)00507-5
  • Webster, R., & Morgan, R. P. C. (2002). Soil Erosion and Conservation. En: Toy T. J., Foster, G. R., Renard, K. G. (Eds.), Soil Erosion: Processes, Prediction, Measurement, and Control. New York: John Wiley & Sons.
  • Wijesundara, N. C., Abeysingha, N. S., & Dissanayake, D. (2018). GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Modeling Earth Systems and Environment, 4(1), 251-262. http://dx.doi.org/10.1007/s40808-018-0419-z
  • Wischmeier W. H., & Smith D. D. (1978). Predicting rainfall erosion Losses: A guide to conservation planning. Washington: Science and Education Administration, U.S. Department of Agriculture.
  • Yang, X., Zhu, Q., Tulau, M., McInnes-Clarke, S., Sun, L., & Zhang, X. (2018). Near real-Time monitoring of post-fire erosion after storm events: A case study in Warrumbungle National Park, Australia. International Journal of Wildland Fire, 27(6), 413-424. https://doi.org/10.1071/WF18011
  • Yus-Ramos, R., Carrillo-Romero, O., Fernández-Camacho, V., & Torres-Delgado, M.A. (2020). La burbuja de los cultivos subtropicales y el colapso hídrico en la Axarquía. Vélez-Málaga: Gabinete de Estudios de la Naturaleza de la Axarquía (GENA).
  • Zhao, G., Gao, P., Tian, P., Sun, W., Hu, J., & Mu, X. (2020). Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China. Catena, 185, 104284. https://doi.org/10.1016/j.catena.2019.10428