Vertical Mapping of Auditory LoudnessLoud is High, but Quiet is not Always Low

  1. Puigcerver, Laura
  2. Rodríguez-Cuadrado, Sara
  3. Gómez-Tapia, Víctor
  4. Navarra, Jordi
Revista:
Psicológica: Revista de metodología y psicología experimental

ISSN: 1576-8597

Año de publicación: 2019

Volumen: 40

Número: 2

Páginas: 85-104

Tipo: Artículo

DOI: 10.2478/PSICOLJ-2019-0006 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Psicológica: Revista de metodología y psicología experimental

Resumen

Aunque la asociación perceptiva entre la verticalidad y la frecuencia auditiva ha sido ampliamente estudiada, la relación entre la intensidad y la verticalidad sigue sin entenderse completamente. Mientras que se asume que los sonidos más y menos intensos están asociados de forma igual con la elevación espacial, existen diferencias perceptivas entre los dos tipos de sonidos que sugieren lo contrario. Por ejemplo, los sonidos más intensos tienden a generar más actividad, tanto en el aspecto conductual como neuronal, que los sonidos más flojos. En este estudio, investigamos si esta diferencia influye en la correspondencia transmodal entre la intensidad y la verticalidad. En una fase inicial, los participantes aprendieron asociaciones arbitrarias entre uno de dos tonos que diferían en intensidad (82dB vs. 56 dB) y uno de dos rectángulos coloreados (azul vs. amarillo). Durante la fase experimental, se les presentaron los dos estímulos coloreados (cada uno de ellos localizado por encima o debajo de un punto central de partida), junto con uno de los dos tonos. Los participantes tenían que indicar cuál de los dos rectángulos coloreados correspondía al tono previamente asociado moviendo el cursor del ratón desde el punto de partida hasta el objetivo. Los resultados mostraron que los participantes fueron significativamente más rápidos cuando respondían al tono más intenso cuando el objetivo visual se situaba arriba (condición congruente) que cuando se situaba abajo (condición incongruente). Para los sonidos menos intensos no se observaron diferencias entre las condiciones congruente (flojo-abajo) e incongruente (flojo-arriba). En general, este patrón de resultados sugiere que las posibles diferencias en la actividad neuronal generadas por sonidos de mayor y menor intensidad influyen el grado en el que la intensidad y la elevación espacial comparten contenido representacional.

Información de financiación

*Corresponding author: Laura Puigcerver, Fundació Sant Joan de Déu, Hospital Sant Joan de Déu – c/ Santa Rosa 39-57, Edifici Docent, 4th floor. 08950 Esplugues de Llobregat (Barcelona), Spain. E-mail: l.puigcerver@gmail.com. Acknowledgments: We would like to thank Irune Fernández-Prieto for her comments on an earlier version of the article. The present study was supported by the PSI2015-71143-P grant from Ministerio de Economía y Competitividad (MINECO), Spain to J.N.; and a FPI scholarship (MINECO) to L.P.

Referencias bibliográficas

  • Bach D. R. Schahinger H. Neuhoff J. G. Esposito F. Salle F. Di Lehmann C. … Seifritz E. (2008). Rising Sound Intensity: An Intrinsic Warning Cue Activating the Amygdala. Cerebral Cortex18(1) 145–150. https://doi.org/10.1093/cercor/bhm040
  • Bernstein I. H. & Edelstein B. A. (1971). Effects of some variations in auditory input upon visual choice reaction time. Journal of Experimental Psychology87(2) 241–247. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5542226
  • Bien N. ten Oever S. Goebel R. & Sack A. T. (2012a). The sound of size: Crossmodal binding in pitch-size synesthesia: A combined TMS EEG and psychophysics study. NeuroImage59(1) 663–672. https://doi.org/10.1016/j.neuroimage.2011.06.095
  • Bien N. ten Oever S. Goebel R. & Sack A. T. (2012b). The sound of size: Crossmodal binding in pitch-size synesthesia: A combined TMS EEG and psychophysics study. NeuroImage59(1) 663–672. https://doi.org/10.1016/J.NEUROIMAGE.2011.06.095
  • Bond B. & Stevens S. S. (1969). Cross-modality matching of brightness to loudness by 5-year-olds. Perception & Psychophysics6(6) 337–339. https://doi.org/10.3758/BF03212787
  • Brochard R. Dufour A. & Després O. (2004). Effect of musical expertise on visuospatial abilities: Evidence from reaction times and mental imagery. Brain and Cognition54(2) 103–109. https://doi.org/10.1016/S0278-2626(03)00264-1
  • Bruzzi E. Talamini F. Priftis K. & Grassi M. (2017). A SMARC Effect for Loudness. I-Perception8(6) 204166951774217. https://doi.org/10.1177/2041669517742175
  • Bueti D. & Walsh V. (2009). The parietal cortex and the representation of time space number and other magnitudes. Philosophical Transactions of the Royal Society of London B: Biological Sciences364(1525) 1831–1840. https://doi.org/10.1098/rstb.2009.0028
  • Burro R. & Grassi M. (2001). Experiments on size and height of falling objects. Phenomenology of Sound Events IST Project No. IST-2000-25287 Report 1 31–39.
  • Cabrera D. & Tilley S. (2003a). Parameters for auditory display of height and size. In Proceedings of the 9th International Conference on Auditory Display (ICAD). Boston MA: Georgia Institute of Technology.
  • Cabrera D. & Tilley S. (2003b). Vertical Localization and Image Size Effects in Loudspeaker Reproduction. In Audio Engineering Society Conference: 24th International Conference: Multichannel Audio The New Reality. Banff Canada: Audio Engineering Society.
  • Carello C. Anderson K. L. & Kunkler-Peck A. J. (1998). Perception of Object Length by Sound. Psychological Science9(3) 211–214. https://doi.org/10.1111/1467-9280.00040
  • Critchley M. (1953). The parietal lobes. Oxford England: Williams and Wilkins.
  • Deroy O. Fernandez-Prieto I. Navarra J. & Spence C. (2018). Unraveling the Paradox of Spatial Pitch. In Spatial Biases in Perception and Cognition (pp. 77–93). Cambridge University Press. https://doi.org/10.1017/9781316651247.006
  • Dolscheid S. Hunnius S. Casasanto D. & Majid A. (2014). Prelinguistic Infants Are Sensitive to Space-Pitch Associations Found Across Cultures. Psychological Science25(6) 1256–1261. https://doi.org/10.1177/0956797614528521
  • Douglas K. M. & Bilkey D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience10(7) 915–921. https://doi.org/10.1038/nn1925
  • Dubus G. & Bresin R. (2013). A Systematic Review of Mapping Strategies for the Sonification of Physical Quantities. PLoS ONE8(12) e82491. https://doi.org/10.1371/journal.pone.0082491
  • Eitan Z. & Granot R. Y. (2006). How Music Moves. Music Perception: An Interdisciplinary Journal23(3). https://doi.org/10.1525/mp.2006.23.3.221
  • Eitan Z. Schupak A. & Marks L. E. (2008). Louder is Higher: Cross-Modal Interaction of Loudness Change and Vertical Motion in Speeded Classification. In Proceedings of the 10th international conference on music perception and cognition (ICMP10).
  • Evans K. K. & Treisman A. (2011). Natural cross-modal mappings between visual and auditory features. Journal of Vision10(1) 6–6. https://doi.org/10.1167/10.1.6
  • Fernández-Prieto I. & Navarra J. (2017). The higher the pitch the larger its crossmodal influence on visuospatial processing. Psychology of Music45(5) 713–724. https://doi.org/10.1177/0305735616684205
  • Fernández-Prieto I. Navarra J. & Pons F. (2015). How big is this sound? Crossmodal association between pitch and size in infants. Infant Behavior and Development38 77–81. https://doi.org/10.1016/j.infbeh.2014.12.008
  • Fernandez-Prieto I. Spence C. Pons F. & Navarra J. (2017). Does Language Influence the Vertical Representation of Auditory Pitch and Loudness? I-Perception8(3). https://doi.org/10.1177/2041669517716183
  • Ferri F. Tajadura-Jiménez A. Väljamäe A. Vastano R. & Costantini M. (2015). Emotion-inducing approaching sounds shape the boundaries of multisensory peripersonal space. Neuropsychologia70 468–475. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2015.03.001
  • Foster N. E. V. Halpern A. R. & Zatorre R. J. (2013). Common parietal activation in musical mental transformations across pitch and time. NeuroImage75 27–35. https://doi.org/10.1016/j.neuroimage.2013.02.044
  • Foster N. E. V. & Zatorre R. J. (2010a). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex (New York N.Y. : 1991)20(6) 1350– 1359. https://doi.org/10.1093/cercor/bhp199
  • Foster N. E. V. & Zatorre R. J. (2010b). Cortical structure predicts success in performing musical transformation judgments. NeuroImage53(1) 26–36. https://doi.org/10.1016/j.neuroimage.2010.06.042
  • Gallace A. & Spence C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & Psychophysics68(7) 1191–1203. https://doi.org/10.3758/bf03193720
  • Garner W. R. & Sutliff D. (1974). The effect of goodness onencoding time in visual pattern discrimination. Perception & Psychophysics16(3) 426–430. https://doi.org/10.3758/BF03198567
  • Ghazanfar A. A. Neuhoff J. G. & Logothetis N. K. (2002). Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America99(24) 15755–15757. https://doi.org/10.1073/pnas.242469699
  • Hall D. A. & Moore D. R. (2003). Auditory Neuroscience: The Salience of Looming Sounds. Current Biology13(3) R91–R93. https://doi.org/10.1016/S0960-9822(03)00034-4
  • Jacobsen T. Horenkamp T. & Schröger E. (2003). Preattentive memory-based comparison of sound intensity. Audiology & Neuro-Otology8(6) 338–346. https://doi.org/73518
  • Lewkowicz D. J. & Minar N. J. (2014). Infants Are Not Sensitive to Synesthetic Cross-Modality Correspondences: A Comment on Walker et al. (2010). Psychological Science25(3) 832–834. https://doi.org/10.1177/0956797613516011
  • Lewkowicz D. J. & Turkewitz G. (1980). Cross-modal equivalence in early infancy: Auditory-visual intensity matching. Developmental Psychology16(6) 597–607. https://doi.org/10.1037/0012-1649.16.6.597
  • Lidji P. Kolinsky R. Lochy A. & Morais J. (2007). Spatial associations for musical stimuli: A piano in the head? Journal of Experimental Psychology: Human Perception and Performance33(5) 1189–1207. https://doi.org/10.1037/0096-1523.33.5.1189
  • Lipscomb S. D. & Kim E. M. (2004). Perceived match between visual parameters and auditory correlates: an experimental multimedia investigation. In S. Lipscomb R. Ashley R. Gjerdingen & P. Webster (Eds.) Proceedings of the 8th International Conference on Music Perception & Cognition (ICMPC8). Evanston IL USA: Adelaide Australia: Casual Productions.
  • Marks L. E. (1974). On Associations of Light and Sound: The Mediation of Brightness Pitch and Loudness. The American Journal of Psychology87(1/2) 173. https://doi.org/10.2307/1422011
  • Marks L. E. (1987). On cross-modal similarity: Auditory–visual interactions in speeded discrimination. Journal of Experimental Psychology: Human Perception and Performance13(3) 384–394. https://doi.org/10.1037/0096-1523.13.3.384
  • Melara R. D. & O’Brien T. P. (1987). Interaction between synesthetically corresponding dimensions. Journal of Experimental Psychology: General116(4) 323–336. https://doi.org/10.1037/0096-3445.116.4.323
  • Näätänen R. Paavilainen P. Alho K. Reinikainen K. & Sams M. (1989). Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neuroscience Letters98(2) 217–221. https://doi.org/10.1016/0304-3940(89)90513-2
  • Näätänen R. Paavilainen P. Rinne T. & Alho K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology118(12) 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026
  • Neuhoff J. G. (1998). Perceptual bias for rising tones. Nature395(6698) 123–124. https://doi.org/10.1038/25862
  • Occelli V. Spence C. & Zampini M. (2009). Compatibility effects between sound frequency and tactile elevation. NeuroReport20(8) 793–797. https://doi.org/10.1097/WNR.0b013e32832b8069
  • Parise C. V. & Spence C. (2009). ‘When Birds of a Feather Flock Together’: Synesthetic Correspondences Modulate Audiovisual Integration in Non-Synesthetes. PLoS ONE4(5) e5664. https://doi.org/10.1371/journal.pone.0005664
  • Parise C. V. (2016). Crossmodal Correspondences: Standing Issues and Experimental Guidelines. Multisensory Research29(1–3) 7–28. https://doi.org/10.1163/22134808-00002502
  • Parkinson C. Kohler P. J. Sievers B. & Wheatley T. (2012). Associations between Auditory Pitch and Visual Elevation Do Not Depend on Language: Evidence from a Remote Population. Http://Dx.Doi.Org/10.1068/P7225. https://doi.org/10.1068/P7225
  • Phillips J. G. & Triggs T. J. (2001). Characteristics of cursor trajectories controlled by the computer mouse. Ergonomics44(5) 527–536. https://doi.org/10.1080/00140130121560
  • Rinne T. Särkkä A. Degerman A. Schröger E. & Alho K. (2006). Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Research1077(1) 135–143. https://doi.org/10.1016/j.brainres.2006.01.043
  • Root R. T. & Ross S. (1965). Further Validation of Subjective Scales for Loudness and Brightness by Means of Cross-Modality Matching. The American Journal of Psychology78(2) 285. https://doi.org/10.2307/1420502
  • Rusconi E. Kwan B. Giordano B. L. Umiltà C. & Butterworth B. (2006). Spatial representation of pitch height: the SMARC effect. Cognition99(2) 113–129. https://doi.org/10.1016/j.cognition.2005.01.004
  • Schröger E. (1996). The influence of stimulus intensity and inter-stimulus interval on the detection of pitch and loudness changes. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section100(6) 517–526. https://doi.org/10.1016/S0168-5597(96)95576-8
  • Sluming V. Brooks J. Howard M. Downes J. J. & Roberts N. (2007). Broca’s Area Supports Enhanced Visuospatial Cognition in Orchestral Musicians. Journal of Neuroscience27(14) 3799–3806. https://doi.org/10.1523/JNEUROSCI.0147-07.2007
  • Smith L. B. & Sera M. D. (1992). A developmental analysis of the polar structure of dimensions. Cognitive Psychology24(1) 99–142. https://doi.org/10.1016/0010-0285(92)90004-L
  • Spence C. (2011). Crossmodal correspondences: A tutorial review. Attention Perception & Psychophysics73(4) 971–995. https://doi.org/10.3758/s13414-010-0073-7
  • Spence C. & Deroy O. (2013). How automatic are crossmodal correspondences? Consciousness and Cognition22(1) 245–260. https://doi.org/10.1016/j.concog.2012.12.006
  • Stevens J. & Marks L. (1965). Cross-modality matching of brightness and loudness. In Proceedings of the National Academy of Sciences (Vol. 54.2 pp. 407–411).
  • Tajadura-Jiménez A. Väljamäe A. Asutay E. & Västfjäll D. (2010). Embodied auditory perception: The emotional impact of approaching and receding sound sources. Emotion10(2) 216–229. https://doi.org/10.1037/a0018422
  • Tillmann B. Jolicœur P. Ishihara M. Gosselin N. Bertrand O. Rossetti Y. & Peretz I. (2010). The Amusic Brain: Lost in Music but Not in Space. PLoS ONE5(4) e10173. https://doi.org/10.1371/journal.pone.0010173
  • Walker P. Bremner J. G. Mason U. Spring J. Mattock K. Slater A. & Johnson S. P. (2010). Preverbal Infants’ Sensitivity to Synaesthetic Cross-Modality Correspondences. Psychological Science21(1) 21–25. https://doi.org/10.1177/0956797609354734
  • Walker P. Bremner J. G. Mason U. Spring J. Mattock K. Slater A. & Johnson S. P. (2014). Preverbal Infants Are Sensitive to Cross-Sensory Correspondences: Much Ado About the Null Results of Lewkowicz and Minar (2014). Psychological Science25(3) 835–836. https://doi.org/10.1177/0956797613520170
  • Walker R. (1987). The effects of culture environment age and musical training on choices of visual metaphors for sound. Perception & Psychophysics42(5) 491–502. https://doi.org/10.3758/BF03209757
  • Walsh V. (2003). A theory of magnitude: common cortical metrics of time space and quantity. Trends in Cognitive Sciences7(11) 483–488. https://doi.org/10.1016/j.tics.2003.09.002
  • Walsh V. Gallistell R. C. Gellman R. Brannon E. M. Roitman J. D. Rossetti Y. … Fischer M. H. (2003). A theory of magnitude: common cortical metrics of time space and quantity. Trends in Cognitive Sciences7(11) 483–488. https://doi.org/10.1016/J.TICS.2003.09.002
  • Wicker F. W. (1968). Mapping the Intersensory Regions of Perceptual Space. The American Journal of Psychology81(2) 178. https://doi.org/10.2307/1421262
  • Zahorik P. Brungart D. S. & Bronkhorst A. W. (2005). Auditory Distance Perception in Humans: A Summary of Past and Present Research. Acta Acustica United with Acustica91(3) 409–420.