Exercise training is effective for arterial stiffness and blood pressure rehabilitation in hypertensive adults

  1. Cristian Alvarez 1
  2. Luis Peñailillo 2
  3. Paulina Ibacahe 2
  4. Marcelo Tuesta 2
  5. Daniel Jerez-Mayorga 3
  6. Jaroslaw Domaradski 4
  7. Andrade, David C. 5
  8. Omar Andrade-Mayorga 6
  9. Johnattan Cano-Montoya 7
  10. Pedro Delgado-Floody 6
  1. 1 Universidad de Los Lagos
    info

    Universidad de Los Lagos

    Osorno, Chile

    ROR https://ror.org/05jk8e518

  2. 2 Universidad Andrés Bello
    info

    Universidad Andrés Bello

    Santiago de Chile, Chile

    ROR https://ror.org/01qq57711

  3. 3 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  4. 4 Wroclaw University of Science and Technology
  5. 5 Universidad de Antofagasta
    info

    Universidad de Antofagasta

    Antofagasta, Chile

    ROR https://ror.org/04eyc6d95

  6. 6 Universidad de La Frontera
    info

    Universidad de La Frontera

    Temuco, Chile

    ROR https://ror.org/04v0snf24

  7. 7 Universidad San Sebastián
    info

    Universidad San Sebastián

    Concepción, Chile

    ROR https://ror.org/04jrwm652

Revista:
Retos: nuevas tendencias en educación física, deporte y recreación

ISSN: 1579-1726 1988-2041

Año de publicación: 2024

Número: 56

Páginas: 301-311

Tipo: Artículo

Otras publicaciones en: Retos: nuevas tendencias en educación física, deporte y recreación

Resumen

Existe limitada información respecto a la reducción de la rigidez arterial entre sujetos con hipertensión y factores de riesgo para enfermedades vascular-metabólicas (i.e., de los vasos sanguíneos), donde el ejercicio induce un rol fisioterapéutico y preventivo. El objetivo del estudio fue 1) testear los efectos de 6 semanas de ejercicio concurrente de tipo alta intensidad interválico y de fuerza (CTHIIT+RT) en la la rigidez arterial de sujetos con diferente control de presión arterial y 2) comparar la magnitud de estas adaptaciones al ejercicio en diferentes variables secundarias de presión arterial y vasculares. Estudio clínico experimental aleatorizado desarrollado en seis categorías (3 controles y 3 experimentales) de adultos; controles hipertensos (CG-HTN, n=10), control presión elevada (CG-ELE, n=10), controles normotensos (CG-NT, n=10), o experimental hipertensos (ExG-HTN, n=10), presión elevada (ExG-ELE, n=10), o normotensos (ExG-NT, n=10). Los sujetos desarrollaron 6 semanas de CTHIIT+RT, donde la velocidad de onda de pulso de la arteria braquial (PWVba) (resultado primario) y variables de presión arterial, composición corporal y vasculares (resultados secundarios), fueron medidas antes y después de 6 semanas de intervención. Posterior a 6 semanas de CTHIIT+RT se observaron diferencias significativas en la magnitud de reducción de ΔPWVba en el grupo ExG-HTN versus grupo ExG-NT (diff. 0.86 m/s-1) y entre el grupo ExG-ELE vs. ExG-NT (diff. 0.76 m/s-1). En conclusión, 6 semanas de CTHIIT+RT reducen la rigidez arterial en adultos con diferente control de presión arterial, con una magnitud superior en pacientes hipertensos. Beneficios adicionales se encontraron en cese de la presión arterial elevada en los pacientes hipertensos.

Referencias bibliográficas

  • ADA. (2023). 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes—2024. Diabetes Care, 47(Supplement_1), S77-S110. https://doi.org/10.2337/dc24-S005
  • Alvarez, C., Campos-Jara, C., Ciolac, E. G., Guimaraes, G. V., Andrade-Mayorga, O., Cano-Montoya, J., Andrade, D. C., Delgado-Floody, P., Alonso-Martínez, A., & Izquierdo, M. (2023). Hypertensive patients show higher heart rate response during incremental exercise and elevated arterial age estimation than normotensive adult peers: VASCU-HEALTH PROJECT . Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 50, 25-32. https://doi.org/10.47197/retos.v50.99716
  • Ashor, A. W., Lara, J., Siervo, M., Celis-Morales, C., & Mathers, J. C. (2014). Effects of Exercise Modalities on Arterial Stiffness and Wave Reflection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PloS one, 9(10), e110034. https://doi.org/10.1371/journal.pone.0110034
  • Åstrand, P.-O. (2003). Textbook of work physiology: physiological bases of exercise. Human kinetics.
  • Augeri, A. L., Tsongalis, G. J., Van Heest, J. L., Maresh, C. M., Thompson, P. D., & Pescatello, L. S. (2009). The endothelial nitric oxide synthase− 786 T> C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure. Atherosclerosis, 204(2), e28-e34. https://doi.org/10.1016/j.atherosclerosis.2008.12.015
  • Birk, G. K., Dawson, E. A., Atkinson, C., Haynes, A., Cable, N. T., Thijssen, D. H., & Green, D. J. (2012). Brachial artery adaptation to lower limb exercise training: role of shear stress. Journal of Applied Physiology, 112(10), 1653-1658. https://doi.org/10.1152/japplphysiol.01489.2011
  • Bowden Davies, K. A., Norman, J. A., Thompson, A., Mitchell, K. L., Harrold, J. A., Halford, J. C., Wilding, J. P., Kemp, G. J., Cuthbertson, D. J., & Sprung, V. S. (2021). Short-term physical inactivity induces endothelial dysfunction. Front Physiol, 12, 659834. https://doi.org/10.3389/fphys.2021.659834
  • Cade, R., Mars, D., Wagemaker, H., Zauner, C., Packer, D., Privette, M., Cade, M., Peterson, J., & Hood-Lewis, D. (1984). Effect of aerobic exercise training on patients with systemic arterial hypertension. The American journal of medicine, 77(5), 785-790. https://doi.org/10.1016/0002-9343(84)90513-8
  • Chen, H.-Y., & Chauhan, S. P. (2019). Hypertension among women of reproductive age: Impact of 2017 American College of Cardiology/American Heart Association high blood pressure guideline. International Journal of Cardiology Hypertension, 1, 100007. https://doi.org/10.1016/j.ijchy.2019.100007
  • Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065-2079. https://doi.org/10.2337/dc16-1728
  • Farahati, S., Hosseini, S. R. A., Moazzami, M., Daloee, M. H., & Daloee, S. H. (2020). The Impact of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Carotid Intima-Media Thickness and Ankle-Brachial Index in Middle-Aged Women. Int J Prev Med, 11, 62. https://doi.org/10.4103/ijpvm.IJPVM_524_18
  • Forde, C., Johnston, M., Haberlin, C., Breen, P., Greenan, S., Gissane, C., Comyns, T., Maher, V., & Gormley, J. (2020). Low Dose Resistance Exercise: A Pilot Study Examining Effects on Blood Pressure and Augmentation Index Between Intensities. High Blood Pressure & Cardiovascular Prevention, 27(1), 83-91. https://doi.org/10.1007/s40292-020-00362-5
  • Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., Swain, D. P., & American College of Sports, M. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb
  • Gómez-Rossel, O., & Merellano-Navarro, E. (2024). Efectos del entrenamiento concurrente en indicadores de condición física y calidad de vida de adultos sanos (Effects of concurrent training on indicators of physical condition and quality of life of healthy adults). Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 54, 24-35.
  • Guimaraes, G. V., Ciolac, E. G., Carvalho, V. O., D'Avila, V. M., Bortolotto, L. A., & Bocchi, E. A. (2010). Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens Res, 33(6), 627-632. http://dx.doi.org/10.1038/hr.2010.42
  • Halliwill, J. R. (2001). Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev, 29(2), 65-70. https://doi.org/10.1097/00003677-200104000-00005
  • Hasegawa, N., Fujie, S., Horii, N., Uchida, M., Kurihara, T., Sanada, K., Hamaoka, T., & Iemitsu, M. (2018). Aerobic exercise training-induced changes in serum C1q/TNF-related protein levels are associated with reduced arterial stiffness in middle-aged and older adults. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 314(1), R94-R101. https://doi.org/10.1152/ajpregu.00212.2017
  • Heiss, C., Rodriguez-Mateos, A., Bapir, M., Skene, S. S., Sies, H., & Kelm, M. (2022). Flow-mediated dilation reference values for evaluation of endothelial function and cardiovascular health. Cardiovascular Research. https://doi.org/10.1093/cvr/cvac095
  • Kanaley, J. A., Fenicchia, L. M., Miller, C. S., Ploutz-Synder, L. L., Weinstock, R. S., Carhart, R., & Azevedo, J. L., Jr. (2001). Resting leptin responses to acute and chronic resistance training in type 2 diabetic men and women. Int J Obes Relat Metab Disord, 25(10), 1474-1480. https://doi.org/10.1038/sj.ijo.0801797
  • Kim, E. J., Park, C. G., Park, J. S., Suh, S. Y., Choi, C. U., Kim, J. W., Kim, S. H., Lim, H. E., Rha, S. W., Seo, H. S., & Oh, D. J. (2007). Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study. Journal of Human Hypertension, 21(2), 141-148. https://doi.org/10.1038/sj.jhh.1002120
  • Kim, H. M., Rhee, T.-M., & Kim, H.-L. (2022). Integrated approach of brachial-ankle pulse wave velocity and cardiovascular risk scores for predicting the risk of cardiovascular events. PloS one, 17(4), e0267614.
  • Koivistoinen, T., Lyytikäinen, L.-P., Aatola, H., Luukkaala, T., Juonala, M., Viikari, J., Lehtimäki, T., Raitakari, O. T., Kähönen, M., & Hutri-Kähönen, N. (2018). Pulse Wave Velocity Predicts the Progression of Blood Pressure and Development of Hypertension in Young Adults. Hypertension, 71(3), 451-456. https://doi.org/doi:10.1161/HYPERTENSIONAHA.117.10368
  • Lee, D., Byun, K., Hwang, M.-H., & Lee, S. (2021). Augmentation index is inversely associated with skeletal muscle mass, muscle strength, and anaerobic power in young male adults: a preliminary study. Applied Sciences, 11(7), 3146.
  • Lobato, N. S., Filgueira, F. P., Akamine, E. H., Tostes, R. C., Carvalho, M. H., & Fortes, Z. B. (2012). Mechanisms of endothelial dysfunction in obesity-associated hypertension. Braz J Med Biol Res, 45(5), 392-400. https://doi.org/10.1590/s0100-879x2012007500058
  • Low, D. A., Shibasaki, M., Davis, S. L., Keller, D. M., & Crandall, C. G. (2007). Does local heating-induced nitric oxide production attenuate vasoconstrictor responsiveness to lower body negative pressure in human skin? Journal of Applied Physiology, 102(5), 1839-1843. https://doi.org/10.1152/japplphysiol.01181.2006
  • Molmen-Hansen, H. E., Stolen, T., Tjonna, A. E., Aamot, I. L., Ekeberg, I. S., Tyldum, G. A., Wisloff, U., Ingul, C. B., & Stoylen, A. (2012). Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. European Journal of Preventive Cardiology, 19(2), 151-160. https://doi.org/10.1177/1741826711400512
  • Munir, S., Jiang, B., Guilcher, A., Brett, S., Redwood, S., Marber, M., & Chowienczyk, P. (2008). Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. American Journal of Physiology-Heart and Circulatory Physiology, 294(4), H1645-H1650. https://doi.org/10.1152/ajpheart.01171.2007
  • Ochi, M., Kohara, K., Tabara, Y., Kido, T., Uetani, E., Ochi, N., Igase, M., & Miki, T. (2010). Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis, 212(1), 327-332. https://doi.org/10.1016/j.atherosclerosis.2010.05.026
  • Olea, M. A., Mancilla, R., Martínez, S., & Díaz, E. (2017). Entrenamiento interválico de alta intensidad contribuye a la normalización de la hipertensión arterial. Rev Med Chil, 145(9), 1154-1159. http://dx.doi.org/10.4067/s0034-98872017000901154
  • Oviedo, G., Niño, O., Bellomío, C., González, R., & Guerra, M. (2015). Entrenamiento, presión arterial y lípidos en adultos con prehipertensión. Retos: nuevas tendencias en educación física, deporte y recreación(27), 67-72. https://doi.org/10.47197/retos.v0i27.34350
  • Pedralli, M. L., Marschner, R. A., Kollet, D. P., Neto, S. G., Eibel, B., Tanaka, H., & Lehnen, A. M. (2020). Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial Exercise, endothelium and blood pressure. Scientific reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-64365-x
  • Pescatello, L. S., Buchner, D. M., Jakicic, J. M., Powell, K. E., Kraus, W. E., Bloodgood, B., Campbell, W. W., Dietz, S., Dipietro, L., George, S. M., Macko, R. F., Mctiernan, A., Pate, R. R., Piercy, K. L., & committee*, F. t. p. a. g. a. (2019). Physical Activity to Prevent and Treat Hypertension: A Systematic Review. Medicine & Science in Sports & Exercise, 51(6), 1314-1323. https://doi.org/10.1249/mss.0000000000001943
  • Pescatello, L. S., MacDonald, H. V., Lamberti, L., & Johnson, B. T. (2015). Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Current hypertension reports, 17(11), 1-10.
  • Pescatello, L. S., Miller, B., Danias, P. G., Werner, M., Hess, M., Baker, C., & Jane De Souza, M. (1999). Dynamic exercise normalizes resting blood pressure in mildly hypertensive premenopausal women. Am Heart J, 138(5 Pt 1), 916-921. https://doi.org/S000287039900321X [pii]
  • Petermann, F., Durán, E., Labraña, A. M., Martínez, M. A., Leiva, A. M., Garrido-Méndez, A., Poblete-Valderrama, F., Díaz-Martínez, X., Salas, C., & Celis-Morales, C. (2017). Factores de riesgo asociados al desarrollo de hipertensión arterial en Chile. Rev Med Chil, 145(8), 996-1004. http://dx.doi.org/10.4067/s0034-98872017000800996
  • Potosí-Moya, V., Paredes-Gómez, R., & Durango-Sánchez, X. (2024). HIIT y su influencia sobre el VO2max en estudiantes de fisioterapia (HIIT and its influence on VO2max in physiotherapy students). Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 54, 616-624.
  • Ramírez-Vélez, R., Castro-Astudillo, K., Correa-Bautista, J. E., González-Ruíz, K., Izquierdo, M., García-Hermoso, A., Álvarez, C., Ramírez-Campillo, R., & Correa-Rodríguez, M. (2020). The effect of 12 Weeks of different exercise training modalities or nutritional guidance on cardiometabolic risk factors, vascular parameters, and physical fitness in overweight Adults: cardiometabolic high-intensity interval training-resistance training randomized controlled study. The Journal of Strength & Conditioning Research, 34(8), 2178-2188.
  • Ramírez-Vélez, R., Hernández-Quiñones, P. A., Tordecilla-Sanders, A., Álvarez, C., Ramírez-Campillo, R., Izquierdo, M., Correa-Bautista, J. E., Garcia-Hermoso, A., & Garcia, R. G. (2019). Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids in health and disease, 18(1), 42. http://dx.doi.org/10.1519/JSC.0000000000003533
  • Ring, M., Eriksson, M. J., Zierath, J. R., & Caidahl, K. (2014). Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertension Research, 37(11), 999-1007. https://doi.org/10.1038/hr.2014.115
  • Román, C., Fernández, M., Acevedo, M., Alarcón, G., Araya, M. V., Barquín, I., Barrenechea, J., Díaz, H., Lama, D., Lanas, F., López, R., Oliveros, M. J., Prat, H., Rouliez, K., Santibáñez, C., Serón, P., Troncoso, E., & Varleta, P. (2019). Ejercicio: una herramienta clave en la prevención cardiovascular. Consenso de la Sociedad Chilena de Cardiología y Cirugía Cardiovascular y de la Sociedad Chilena de Kinesiología en Cardiología y Cirugía Cardiovascular. Revista chilena de cardiología, 38, 149-157. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-85602019000200149&nrm=iso
  • Ross, M., Kargl, C. K., Ferguson, R., Gavin, T. P., & Hellsten, Y. (2023). Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol, 123(7), 1415-1432. https://doi.org/10.1007/s00421-022-05128-6
  • Thijssen, D. H., Bruno, R. M., van Mil, A. C., Holder, S. M., Faita, F., Greyling, A., Zock, P. L., Taddei, S., Deanfield, J. E., & Luscher, T. (2019). Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. European Heart Journal, 40(30), 2534-2547. http://dx.doi.org/10.1093/eurheartj/ehz350
  • Thompson, W., Gordon, N., & Pescatello, L. (2021). Manual ACSM para la valoración y prescripción del ejercicio (3ª edición ed.).
  • Whelton, P. K., . . . Wright, J. T. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 71(6), 1269-1324. https://doi.org/doi:10.1161/HYP.0000000000000066
  • WHO. (2000). Obesity: preventing and managing the global epidemic. 894:i–xii, 891–253.
  • Wilkins, B. W., Minson, C. T., & Halliwill, J. R. (2004). Regional hemodynamics during postexercise hypotension. II. Cutaneous circulation. Journal of Applied Physiology, 97(6), 2071-2076.
  • Yan, J., Cai, X., Zhu, G., Guo, R., Yan, H., & Wang, Y. (2022). A non-invasive blood pressure prediction method based on pulse wave feature fusion. Biomedical Signal Processing and Control, 74, 103523. https://doi.org/https://doi.org/10.1016/j.bspc.2022.103523