Descelularización de ovario de rata: comparación de diferentes protocolos de generación de andamios para aplicaciones en bioingeniería
- Rosa María Zumaquero Pérez 1
- Miguel Alaminos 1
- Óscar Darío García García 1
-
1
Universidad de Granada
info
ISSN: 0365-7965
Año de publicación: 2024
Tomo: 109
Número: 818
Páginas: 10-19
Tipo: Artículo
Otras publicaciones en: Actualidad médica
Resumen
Ovarian failure, hormonal disorders, and side effects of cancer treatments are some underlying causes that can affect a woman’s ability to conceive. Given this concern, different preventive options arise to preserve fertility such as cryopreservation of embryos, oocytes, and ovarian tissue; however, they have significant limitations. Currently, bioengineering allows the adoption of different strategies against reproductive disorders and that is why this study evaluates the first step to manufacture in vitro decellularized ovarian bioscaffolds based on the specific ECM of ovarian tissue. To this end, complete rat ovaries have been used that have been subjected to four decellularization protocols that combine different mechanical-chemical-enzymatic treatments in order to eliminate cell nuclei, while maintaining the macro and microstructure of the native tissue. The results of this study, of a histological and histochemical nature, have not revealed significant data regarding the elimination of cell nuclei. However, a novel protocol was identified that has generously removed some of the cellular material while preserving a good ECM structure. All this supports the idea of the importance of the selection of decellularizing agents and their respective concentrations; with special emphasis on the concentration of the strongest ionic detergents such as SDS and the effect it causes on the samples. In addition, what has already been revealed in recent studies has been confirmed, which is that the ovarian scaffolds generated with SDC have been able to better preserve the extracellular composition, which could be beneficial for recellularization and other applications. These generated bioscaffolds form a promising basis for future experiments where the objective should be to optimize the protocols and conduct additional studies
Referencias bibliográficas
- Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, et al. Decellularization and recellularization of the ovary for bioengineering applications; studies in the mouse. Reprod Biol Endocrinol. 2020;18(1). DOI: https://doi.org/10.1186/s12958-020-00630-y
- Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, et al. Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering. J Ovarian Res. 2019;12(1). DOI: https://doi.org/10.1186/s13048-019-0531-3
- Amjadi F, Beheshti R, Nasimi FS, Hassani A, Shirazi R, Tamadon A, et al. Decellularized bovine ovarian niche restored the function of cumulus and endothelial cells. BMC Res Notes. 2022;15(1). DOI: https://doi.org/10.1186/s13104-022- 06233-7
- Amjadi F, Beheshti R, Nasimi FS, Hassani A, Shirazi R, Tamadon A, et al. Decellularized bovine ovarian niche restored the function of cumulus and endothelial cells. BMC Res Notes. 2022;15(1). DOI: 10.1186/s13104-022-06233-7
- Anderson RA, Wallace WHB. Fertility preservation in girls and young women. Clin Endocrinol (Oxf). 2011;75(4):409–19. DOI: https://doi.org/10.1111/j.1365-2265.2011.04100.x
- Aulino P, Costa A, Chiaravalloti E, Perniconi B, Adamo S, Coletti D, et al. Muscle extracellular matrix scaffold is a multipotent environment. Int J Med Sci. 2015;12(4):336– 40. DOI: https://doi.org/10.7150/ijms.10761
- Baiguera S, Del Gaudio C, Kuevda E, Gonfiotti A, Bianco A, Macchiarini P. Dynamic decellularization and cross-linking of rat tracheal matrix. Biomaterials. 2014;35(24):6344–50. DOI: https://doi.org/10.1016/j.biomaterials.2014.04.070
- Campo H, Baptista PM, López-Pérez N, Faus A, Cervelló I, Simón C. Deand recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96(1):34– 45. doi: 10.1095/biolreprod.116.143396
- Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43. DOI: https://doi.org/10.1016/j.biomaterials.2011.01.057
- Definición de ovario Diccionario de cáncer del NCI NCI [Internet]. [cited 2023 Jun 27]. Available from: https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/ovario
- Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Sanchez Serrano M, Schmidt KT, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 2013;99(6):1503–13. DOI: https://doi.org/10.1016/j.fertnstert.2013.03.030
- Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, et al. Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl. 2019; 102:670–82. DOI: https://doi.org/10.1016/j.msec.2019.04.092
- Gandolfi F, Ghiringhelli M, Brevini TAL. Bioengineering the ovary to preserve and reestablish female fertility. Anim Reprod. 2020;16(1):45–51. DOI: https://doi.org/10.21451/1984-3143-AR2018-0099
- García-García ÓD, El Soury M, Campos F, Sánchez-Po- rras D, Geuna S, Alaminos M, et al. Comprehensive ex vivo and in vivo preclinical evaluation of novel chemo enzymatic decellularized peripheral nerve allografts. Front Bioeng Biotechnol. 2023;11. DOI: https://doi.org/10.3389/fbioe.2023.1162684
- Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol. 2020;235(5):4217–26. DOI: https://doi.org/10.1002/jcp.29376
- Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83. DOI: https://doi.org/10.1016/j.biomaterials.2006.02.014
- Gupta SK, Mishra NC, Dhasmana A. Decellularization Methods for Scaffold Fabrication. Methods Mol Biol. 2018; 1577:1–10. DOI: https://doi.org/10.1007/7651_2017_34
- Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther. 2018;9(1):252. DOI: https://doi.org/10.1186/s13287-018-0971-5
- Hewlett M, Mahalingaiah S. Update on primary ovarian insufficiency. Curr Opin Endocrinol Diabetes Obes. 2015;22(6):483–9. DOI: https://doi.org/10.1097/MED.0000000000000206
- Hillebrandt KH, Everwien H, Haep N, Keshi E, Pratschke J, Sauer IM. Strategies based on organ decellularization and recellularization. Transpl Int. 2019;32(6):571–85. DOI: https://doi.org/10.1111/tri.1346
- Kajbafzadeh AM, Khorramirouz R, Kameli SM, Hashemi J, Bagheri A. Decellularization of Human Internal Mammary Artery: Biomechanical Properties and Histopathological Evaluation. Biores Open Access. 2017;6(1):74–84. DOI: https://doi.org/10.1089/biores.2016.0040
- Lecht S, Stabler CT, Rylander AL, Chiaverelli R, Schulman ES, Marcinkiewicz C, et al. Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells. Biomaterials. 2014;35(10):3252–62. DOI: https://doi.org/10.1016/j.biomaterials.2013.12.093
- Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, et al. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Biomacromolecules. 2017;18(4):1229–37. DOI: https://doi.org/10.1021/acs.biomac.6b01908
- Murphy S V., Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85. DOI: https://doi.org/10.1038/nbt.2958
- Olalekan SA, Burdette JE, Getsios S, Woodruff TK, Julie Kim J. Development of a novel human recellularized endometrium that responds to a 28-day hormone treatment. Biol Reprod. 2017;96(5):971–81. DOI: https://doi.org/10.1093/biolre/iox039
- Organización Mundial de la Salud [Internet]. [cited 2023 Jun 27]. Available from: https://www.who.int/es
- Ortiz A. Obtención y caracterización de andamios porosos nanoreforzados, para su posible uso en la regeneración de tejido óseo. Centro de Investigación Científica de Yucatán. 2014. Available from: https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/689/1/PMP_D_Tesis_2011_Alejandro_Ortiz_Fernandez.pdf
- Peng G, Liu H, Fan Y. Biomaterial Scaffolds for Reproductive Tissue Engineering. Ann Biomed Eng. 2017;45(7):1592–607. DOI: https://doi.org/10.1007/s10439-016-1779-z
- Pennarossa G, De Iorio T, Gandolfi F, Brevini TAL. Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells. 2021;10(8). DOI: https://doi.org/10.3390/celdas10082126
- Pennarossa G, Ghiringhelli M, Gandolfi F, Brevini TAL. Whole-ovary decellularization generates an effective 3D bioscaffold for ovarian bioengineering. J Assist Reprod Genet. 2020;37(6):1329–39. DOI: https://doi.org/10.1007/s10815-020-01784-9
- Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808. DOI: https://doi.org/10.1093/humupd/dmv036
- Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, et al. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials. 2014;35(3):970–82. DOI: https://doi.org/10.1016/j.biomaterials.2013.10.045
- Singh A, Bivalacqua TJ, Sopko N. Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev. 2018;6(1):35–44. DOI: https://doi.org/10.1016/j.sxmr.2017.08.004
- Sistani MN, Zavareh S, Valujerdi MR, Salehnia M. Characteristics of a decellularized human ovarian tissue created by combined protocols and its interaction with human endometrial mesenchymal cells. Prog Biomater. 2021;10(3):195–206. DOI: 10.1007/s40204-021-00163-6
- Tamadon A, Park KH, Kim YY, Kang BC, Ku SY. Efficient biomaterials for tissue engineering of female reproductive organs. Tissue Eng Regen Med. 2016;13(5):447–54. DOI: https://doi.org/10.1007/s13770-016-9107-0
- Wu T, Gao YY, Tang XN, Zhang JJ, Wang SX. Construction of Artificial Ovaries with Decellularized Porcine Scaffold and Its Elicited Immune Response after Xenotransplantation in Mice. J Funct Biomater. 2022;13(4). DOI: https://doi.org/10.3390/jfb13040165
- Young RC, Goloman G. Allo- and xeno-reassembly of human and rat myometrium from cells and scaffolds. Tissue Eng Part A. 2013;19(19–20):2112–9. DOI: https://doi.org/10.1089/diez.TEA.2012.0549
- Yu YL, Shao YK, Ding YQ, Lin KZ, Chen B, Zhang HZ, et al. Decellularized kidney scaffold-mediated renal regeneration. Biomaterials. 2014;35(25):6822–8. DOI: https://doi.org/10.1016/j.biomaterials.2014.04.074
- Zhang JK, Du RX, Zhang L, Li YN, Zhang M Le, Zhao S, et al. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix. J Biomed Mater Res A. 2017;105(7):1949–59. DOI: https://doi.org/10.1002/jbm.a.36066