Medición psicofisiológica de las emociones políticasUn análisis de sus antecedentes y propuesta metodológica

  1. David López Córdoba
  2. Ángel Cazorla Martín
  3. Ángel Martín-Lagos
Revista:
RIPS: Revista de investigaciones políticas y sociológicas

ISSN: 1577-239X

Año de publicación: 2024

Volumen: 23

Número: 1

Tipo: Artículo

Otras publicaciones en: RIPS: Revista de investigaciones políticas y sociológicas

Resumen

This article examines the relevance and limitations of traditional electoral prediction models in the field of Political Science. It is pointed out that conventional methods based on sociodemographic variables are losing accuracy due to misinformation provided by respondents and the shift towards politainment. The need to search for new approaches incorporating emotion measurement, such as George Marcus's affective intelligence theory, supported by psychophysiological measurement techniques, is highlighted. Evidence is presented from studies that have used electroencephalography (EEG) and heart rate variability (HRV) to predict voting behaviour more accurately than traditional methods. The creation of a new model combining self-report and physiological response is proposed to improve political behaviour prediction.

Referencias bibliográficas

  • ANSOLABEHERE, Stephen y HERSH, Eitan (2012). “Validation: What Big Data Reveal About Survey Misreporting and the Real Electorate”. Poitical Analysis, 20(4), 437-459. https://doi.org/10.1093/pan/mps023
  • BRADLEY, Margaret M. y LANG, Peter J. (1994). “Measuring emotion: The self-assessment manikin and the semantic differential”. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. https://doi.org/10.1016/0005-7916(94)90063-9
  • CAMPBELL, Angus; CONVERSE, Philip E.; MILLER, Warren E.; y STOKES, Donald E. (1960). The American voter, New York: John Wiley and sons.
  • DIMBERG, Ulf (1990). “Facial electromyography and emotional reactions”. Psychophysiology, 27(5), 481–494. https://doi.org/10.1111/J.1469-8986.1990.TB01962.X
  • DODD, Michael D.; BALZER, Amanda; JACOBS, Carly M.; GRUSZCZYNSKI, Michael W.; SMITH, Kevin B. y HIBBING, John R. (2012). “The political left rolls with the good and the political right confronts the bad: connecting physiology and cognition to preferences” Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1589), 640-649. https://doi.org/10.1098/RSTB.2011.0268
  • DOMÍNGUEZ-JIMÉNEZ, Juan Antonio; CAMPO-LANDINES, Kiara; MARTÍNEZ-SANTOS, Juan Carlos; DELAHOZ, Enrique José y CONTRERAS-ORTIZ, Sonia Helena (2020). “A machine learning model for emotion recognition from physiological signals”. Biomedical Signal Processing and Control, 55, 101646. https://doi.org/10.1016/J.BSPC.2019.101646
  • DOWNS, Anthony (1957). An economic theory of democracy, Inglaterra: Harper & Row.
  • EKMAN, Paul (1992). “An Argument for Basic Emotions”. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068
  • EKMAN, Paul y FRIESEN, Wallace V. (1978). “Facial action coding system”. Environmental Psychology & Nonverbal Behavior. https://doi.org/10.1037/t27734-000
  • EKMAN, Paul y ROSENBERG, Erika L. (2005). What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS), Oxford: Oxford University Press.
  • GALLI, Giulia; ANGELUCCI, Davide; BODE, Stefan; DE GIORGI, Chiara; DE SIO, Lorenzo; PAPARO, Aldo; Di LORENZO, Giorgio y BETTI, Viviana (2021). “Early EEG responses to pre-electoral survey items reflect political attitudes and predict voting behavior”. Scientific Reports 2021, 11(1), 1–13. https://doi.org/10.1038/s41598-021-96193-y
  • HERMANN, Margaret G. (1986). Political psychology, San Francisco: Jossey-Bass.
  • HILL, Seth J. y TAUSANOVITCH, Chris (2015). “A Disconnect in Representation? Comparison of Trends in Congressional and Public Polarization”. The Journal of Politis, 77(4), 1058–1075. https://doi.org/10.1086/682398
  • KLEINGINNA, Paul R. y KLEINGINNA, Anne M. (1981). “A categorized list of emotion definitions, with suggestions for a consensual definition”. Motivation and Emotion, 5(4), 345–379. https://doi.org/10.1007/BF00992553
  • KOTAK, Aditya y MOORE, Don A. (2020). “Public Election Polls are 95% Confident but only 60% Accurate”. Behavioral Science and Policy https://doi.org/10.31234/osf.io/rj643
  • LADD, Jonathan McDondald y LENZ, Gabriel S. (2008). Reassessing the Role of Anxiety in Vote Choice. Political Psychology, 29(2), 275–296. https://doi.org/10.1111/j.1467-9221.2008.00626.x
  • LANDIS, Carney y HUNT, William Alvin (1939). The startle pattern, New York: Farrar & Rinehart.
  • LANG, Peter J. (1994). The Varieties of Emotional Experience: A Meditation on James-Lange Theory. Psychological Review, 101(2), 211–221. https://doi.org/10.1037/0033-295X.101.2.211
  • LAZARSFELD, Paul F.; BERELSON, Bernard y Gaudet, Hazel (1944). The people’s choice: how the voters makes up his mind in a presidential campaign, New York: Columbia University Press.
  • LAZARUS, Richard S. (1991). Emotion and Adaptation. Oxford: Oxford University Press.
  • LIPSET, Seymour Martin. (1961). Political man: the social bases of politics. Baltimore: Johns Hopkins University Press.
  • LODGE, Milton y TABER, Charles (2000). “Three Steps toward a Theory of Motivated Political Reasonin”, en A. LUPIA y M. D. MCCUBBINS (eds.) Elements of Reason. Cognition, choice and the bounds of rationality, Cambridge: Cambridge University Press,183–213. https://doi.org/10.1017/CBO9780511805813.009
  • MACKUEN, Michael; MARCUS, George E. y NEUMAN, W. Russell (2000). Affective Intelligence and Political Judgment, Chicago: University of Chicago Press.
  • MARCUS, George E.; VALENTINO, Nicholas A.; VASILOPOULOS, Pavlos y FOUCAULT, Martial (2019). “Applying the Theory of Affective Intelligence to Support for Authoritarian Policies and Parties”. Political Psychology, 40(S1), 109–139. https://doi.org/10.1111/POPS.12571
  • MAUSS, Iris B. y ROBINSON, Michael D. (2009). “Measures of emotion: A review”. Cognition & Emotion, 23(2), 209–237. https://doi.org/10.1080/02699930802204677
  • MERTON, Robert (1968). Contributions to the Theory of Reference Group Behaviour, Nueva York: The Free Press.
  • MILLER, Jon, KALMBACH, Jason, WOODS, Logan & CEPURAN, Claire. (2021). “The Accuracy and Value of Voter Validation in National Surveys: Insights from Longitudinal and Cross-Sectional Studies”. Political Research Quarterly, 74(2), 332–347. https://doi.org/10.1177/1065912920903432/
  • MO GROBA, Diego (2021). Impacto de las emociones en la decisión de voto: hacia una perspectiva emocional del comportamiento electoral. Universidad de Santiago de Compostela: Tesis Doctoral.
  • MONTERO, Maritza y DORNA, Alejandro (1998). “La psicologia politica contemporánea”. Revista Latinoamericana de Psicología, 25(1), 21–43.
  • OXLEY, Douglas R.; SMITH, Kevin B.; ALFORD, John R.; HIBBING, Matthew V.; MILLER, Jennifer L.; SCALORA, Mario; HATEMI, Peter K. y HIBBING, John R. (2008). “Political attitudes vary with physiological traits”. Science, 321(5896), 1667–1670. https://doi.org/10.1126/SCIENCE.1157627
  • PANKSEPP, Jaak (1992). “A critical role for “affective neuroscience” in resolving what is basic about basic emotions”. Psychological Review, 99(3), 554–560. https://doi.org/10.1037//0033-295X.99.3.554
  • PINTO, Gisela; CARVALHO, João M.; BARROS, Filipa; SOARES, Sandra C.; PINHO, Armando J. y BRÁS, Susana (2020). “Multimodal Emotion Evaluation: A Physiological Model for Cost-Effective Emotion Classification”. Sensors 2020, 20(12), 3510. https://doi.org/10.3390/S20123510
  • PLUTCHIK, Robert (1958). “Outlines of a new theory of emotion”. Transactions of the New York Academy of Sciences, 20(5), 394–403. https://doi.org/10.1111/J.2164-0947.1958.TB00600.X
  • PLUTCHIK, Robert (1980). “A general psychoevolutionary theory of emotion”, en R. PLUTCHIK y H. KELLERMAN (eds.), Theories of Emotion, Cambridge: Academic Press, 3–33. https://doi.org/10.1016/B978-0-12-558701-3.50007-7
  • PLUTCHIK, Robert (1990). “Emotions and psychotherapy: A psychoevolutionary perspective”, en R. PLUTCHIK Y h. KELLERMAN (eds.) Emotion, psychopathology, and psychotherapy, Cambridge: Academic Press, 3–41.
  • RENSHON, Jonathan; LEE, Jooa Julia y TINGLEY, Dustin (2015). “Physiological Arousal and Political Beliefs”. Political Psychology, 36(5), 569–585. https://doi.org/10.1111/pops.12173
  • ROBINSON, Michael D. y CLORE, Gerald L (2002). “Episodic and semantic knowledge in emotional self-report: Evidence for two judgment processes”. Journal of Personality and Social Psychology, 83, 198–215. https://doi.org/10.1037/0022-3514.83.1.198
  • RODRÍGUEZ LIÑARES, Leandro; CUESTA, Pedro; MÉNDEZ, Arturo J.; VILA, Xosé A. y LADO, María J. (2013). “¿Afectan los Spots Electorales al Ritmo Cardíaco?”. Comunicación, Cultura y Esferas de Poder: Libro de Actas. XIII. Santiago de Compostela: Ibercom, 3559-3571.
  • RÚAS-ARAÚJO, José; CUESTA-MORALES, Pedro y VILA-SOBRINO, Xosé Antón (2016). “Study of political campaign ads from Ecuador employing heart rate variability (Hrv)”, en Á. ROCHA; A. CORREIA; H. ADELI; L. REIS; y M. MENDOÇA (eds.) Advances in Intelligent Systems and Computing, 445, Nueva York: Springer, 421–430. https://doi.org/10.1007/978-3-319-31307-8_44
  • RUSSELL, James A. y BARRETT, Lisa Feldman (1999). “Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant”. Journal of Personality and Social Psychology, 76(5), 805–819. https://doi.org/10.1037/0022-3514.76.5.805
  • SHU, Lin; XIE, Jinyan; YANG, Mingyue; LI, Ziyi; LI, Zhenqi; LIAO, Dan; XU, Xiangmin y YANG, Xinyi (2018). “A Review of Emotion Recognition Using Physiological Signals”. Sensors, 18(7). https://doi.org/10.3390/S18072074
  • SMITH, Kevin B. y WARREN, Clarisse (2020). “Physiology predicts ideology. Or does it? The current state of political psychophysiology research”. Current Opinion in Behavioral Sciences, 34, 88–93. https://doi.org/10.1016/J.COBEHA.2020.01.001
  • SUZUKI, Kei; LAOHAKANGVALVIT, T.ipporn; MATSUBARA, Ryota y SUGAYA, Midori (2021). “Constructing an Emotion Estimation Model Based on EEG/HRV Indexes Using Feature Extraction and Feature Selection Algorithms”. Sensors 21(9), 2910. https://doi.org/10.3390/S21092910
  • WAGNER, Michael W.; DEPPE, Kristen D.; JACOBS, Carly M.; FRIESEN, Amanda; SMITH, Kevin B. y HIBBING, John R. (2015). “Beyond Survey Self-Reports: Using Physiology to Tap Political Orientations”. International Journal of Public Opinion Research, 27(3), 303–317. https://doi.org/10.1093/IJPOR/EDU036
  • ZHANG, Jianhua; YIN, Zhong; CHEN, Peng y NICHELE, Stefano (2020). “Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review”. Information Fusion, 59, 103–126. https://doi.org/10.1016/j.inffus.2020.01.011