Principal Bioactive Properties of Oleanolic Acid, Its Derivatives, and Analogues

  1. Jannus, Fatin 1
  2. Sainz, Juan 1234
  3. Reyes-Zurita, Fernando J. 12
  1. 1 Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain
  2. 2 Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
  3. 3 Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración, 114, PTS, 18016 Granada, Spain
  4. 4 Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain
Revista:
Molecules

ISSN: 1420-3049

Año de publicación: 2024

Volumen: 29

Número: 14

Páginas: 3291

Tipo: Artículo

DOI: 10.3390/MOLECULES29143291 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Molecules

Información de financiación

Financiadores

Referencias bibliográficas

  • Petrovska, (2012), Pharmacogn. Rev., 6, pp. 1, 10.4103/0973-7847.95849
  • Newman, (2020), J. Nat. Prod., 83, pp. 770, 10.1021/acs.jnatprod.9b01285
  • Boy, (2018), Digit. Chin. Med., 1, pp. 131, 10.1016/S2589-3777(19)30018-7
  • Bhat, R.A., Hakeem, K.R., and Dervash, M.A. (2021). Chapter 6—Bioactive Compounds Obtained from Plants, Their Pharmacological Applications and Encapsulation. Phytomedicine, Academic Press.
  • Preedy, V.R., and Watson, R.R. (2021). Chapter 26—Antioxidant Activity in Olive Oils. Olives and Olive Oil in Health and Disease Prevention, Academic Press. [2nd ed.].
  • Papadaki, (2022), Food Chem., 381, pp. 132286, 10.1016/j.foodchem.2022.132286
  • Cerrillo, (2023), Food Funct., 14, pp. 9681, 10.1039/D3FO02725B
  • Jesus, (2015), Evid. Based Complement. Altern. Med., 2015, pp. 620472, 10.1155/2015/620472
  • Žiberna, L., Šamec, D., Mocan, A., Nabavi, S.F., Bishayee, A., Farooqi, A.A., Sureda, A., and Nabavi, S.M. (2017). Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. Int. J. Mol. Sci., 18.
  • Cucu, A.-A., Baci, G.-M., Cucu, A.-B., Dezsi, Ş., Lujerdean, C., Hegeduş, I.C., Bobiş, O., Moise, A.R., and Dezmirean, D.S. (2022). Calluna Vulgaris as a Valuable Source of Bioactive Compounds: Exploring Its Phytochemical Profile, Biological Activities and Apitherapeutic Potential. Plants, 11.
  • Vyas, (2014), Asian J. Pharm. Clin. Res., 7, pp. 189
  • Xia, (2011), Int. J. Mol. Sci., 12, pp. 5319, 10.3390/ijms12085319
  • Errichiello, (2023), J. Funct. Foods, 104, pp. 105548, 10.1016/j.jff.2023.105548
  • Xie, P., Cecchi, L., Bellumori, M., Balli, D., Giovannelli, L., Huang, L., and Mulinacci, N. (2021). Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars (Olea europaea L.). Foods, 10.
  • Verstraeten, S., Catteau, L., Boukricha, L., Quetin-Leclercq, J., and Mingeot-Leclercq, M.-P. (2021). Effect of Ursolic and Oleanolic Acids on Lipid Membranes: Studies on MRSA and Models of Membranes. Antibiotics, 10.
  • Shan, T., Ye, J., Jia, J., Wang, Z., Jiang, Y., Wang, Y., Wang, Y., Zheng, K., and Ren, Z. (2021). Viral UL8 Is Involved in the Antiviral Activity of Oleanolic Acid Against HSV-1 Infection. Front. Microbiol., 12.
  • Liu, (2019), Liver Int., 39, pp. 427, 10.1111/liv.13940
  • Stępnik, K., Kukula-Koch, W., Plazinski, W., Rybicka, M., and Gawel, K. (2023). Neuroprotective Properties of Oleanolic Acid—Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals, 16.
  • Bednarczyk-Cwynar, B., Leśków, A., Szczuka, I., Zaprutko, L., and Diakowska, D. (2023). The Effect of Oleanolic Acid and Its Four New Semisynthetic Derivatives on Human MeWo and A375 Melanoma Cell Lines. Pharmaceuticals, 16.
  • Luo, Q., Wei, Y., Lv, X., Chen, W., Yang, D., and Tuo, Q. (2024). The Effect and Mechanism of Oleanolic Acid in the Treatment of Metabolic Syndrome and Related Cardiovascular Diseases. Molecules, 29.
  • Jannus, F. (2022). Caracterización de la Capacidad Anticancerígena y Antiinflamatoria del OADP, Derivado Aminopegilado Semisintetico del Ácido Oleanólico y Aproximación a estas Actividades en n-Derivados del Diclofenaco. [Ph.D. Thesis, Universidad de Granada].
  • Baer-Dubowska, W., Narożna, M., and Krajka-Kuźniak, V. (2021). Anti-Cancer Potential of Synthetic Oleanolic Acid Derivatives and Their Conjugates with NSAIDs. Molecules, 26.
  • Rivas, (2019), J. Nat. Prod., 82, pp. 2886, 10.1021/acs.jnatprod.9b00649
  • Yang, (2024), Chin. J. Nat. Med., 22, pp. 15
  • Yu, (2014), J. Med. Chem., 57, pp. 10058, 10.1021/jm5014067
  • Su, (2019), Eur. J. Med. Chem., 182, pp. 111622, 10.1016/j.ejmech.2019.111622
  • Zou, L.-W., Dou, T.-Y., Wang, P., Lei, W., Weng, Z.-M., Hou, J., Wang, D.-D., Fan, Y.-M., Zhang, W.-D., and Ge, G.-B. (2017). Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1. Front. Pharmacol., 8.
  • Feng, A., Yang, S., Sun, Y., Zhang, L., Bo, F., and Li, L. (2020). Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BioMed Res. Int., 2020.
  • Castellano, J.M., Ramos-Romero, S., and Perona, J.S. (2022). Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients, 14.
  • Rada, (2011), J. Agric. Food Chem., 59, pp. 2308, 10.1021/jf1039537
  • Krajewska, (2020), Langmuir, 36, pp. 3611, 10.1021/acs.langmuir.0c00087
  • Peng, (2014), J. Agric. Food Chem., 62, pp. 2271, 10.1021/jf4049512
  • Parra, (2014), Eur. J. Med. Chem., 74, pp. 278, 10.1016/j.ejmech.2013.12.049
  • Creelan, (2017), Onco Targets Ther., 10, pp. 4239, 10.2147/OTT.S136992
  • Pilotto, (2024), Trends Mol. Med., 30, pp. 117, 10.1016/j.molmed.2023.12.002
  • Kang, (2015), Int. Immunopharmacol., 29, pp. 393, 10.1016/j.intimp.2015.10.024
  • Khansari, (2009), Recent Pat. Inflamm. Allergy Drug Discov., 3, pp. 73, 10.2174/187221309787158371
  • Liu, (2023), J. Hematol. Oncol., 16, pp. 116, 10.1186/s13045-023-01512-7
  • Zhang, (2023), Signal Transduct. Target. Ther., 8, pp. 267, 10.1038/s41392-023-01486-5
  • Navas, A., Jannus, F., Fernández, B., Cepeda, J., Medina O’Donnell, M., Díaz-Ruiz, L., Sánchez-González, C., Llopis, J., Seco, J.M., and Rufino-Palomares, E. (2020). Designing Single-Molecule Magnets as Drugs with Dual Anti-Inflammatory and Anti-Diabetic Effects. Int. J. Mol. Sci., 21.
  • García-Valdivia, A.A., García-García, A., Jannus, F., Zabala-Lekuona, A., Méndez-Arriaga, J.M., Fernández, B., Medina-O’donnell, M., Ramírez-Rodríguez, G.B., Delgado-López, J.M., and Pastrana-Martínez, L.M. (2020). Antiparasitic, Anti-Inflammatory and Cytotoxic Activities of 2D Coordination Polymers Based on 1H-Indazole-5-Carboxylic Acid. J. Inorg. Biochem., 208.
  • García-Valdivia, A.A., Jannus, F., García-García, A., Choquesillo-Lazarte, D., Fernández, B., Medina-O’donnell, M., Lupiáñez, J.A., Cepeda, J., Reyes-Zurita, F.J., and Rodríguez-Diéguez, A. (2021). Anti-Cancer and Anti-Inflammatory Activities of a New Family of Coordination Compounds Based on Divalent Transition Metal Ions and Indazole-3-Carboxylic Acid. J. Inorg. Biochem., 215.
  • Galisteo, A., Jannus, F., García-García, A., Aheget, H., Rojas, S., Lupiañez, J.A., Rodríguez-Diéguez, A., Reyes-Zurita, F.J., and Quílez del Moral, J.F. (2021). Diclofenac N-Derivatives as Therapeutic Agents with Anti-Inflammatory and Anti-Cancer Effect. Int. J. Mol. Sci., 22.
  • Jannus, F., Medina-O’Donnell, M., Neubrand, V.E., Marín, M., Saez-Lara, M.J., Sepulveda, M.R., Rufino-Palomares, E.E., Martinez, A., Lupiañez, J.A., and Parra, A. (2021). Efficient In Vitro and In Vivo Anti-Inflammatory Activity of a Diamine-PEGylated Oleanolic Acid Derivative. Int. J. Mol. Sci., 22.
  • Zentar, (2022), J. Nat. Prod., 85, pp. 2372, 10.1021/acs.jnatprod.2c00578
  • Zentar, H., Jannus, F., Medina-O’Donnell, M., Lupiáñez, J.A., Justicia, J., Alvarez-Manzaneda, R., Reyes-Zurita, F.J., Alvarez-Manzaneda, E., and Chahboun, R. (2022). Synthesis and Biological Evaluation of Cassane Diterpene (5α)-Vuacapane-8(14), 9(11)-Diene and of Some Related Compounds. Molecules, 27.
  • Zentar, H., Jannus, F., Medina-O’Donnell, M., El Mansouri, A., Fernández, A., Justicia, J., Alvarez-Manzaneda, E., Reyes-Zurita, F.J., and Chahboun, R. (2023). Synthesis of Tricyclic Pterolobirin H Analogue: Evaluation of Anticancer and Anti-Inflammatory Activities and Molecular Docking Investigations. Molecules, 28.
  • Jin, J., He, H., Zhang, X., Wu, R., Gan, L., Li, D., Lu, Y., Wu, P., Wong, W.-L., and Zhang, K. (2021). The In Vitro and In Vivo Study of Oleanolic Acid Indole Derivatives as Novel Anti-Inflammatory Agents: Synthesis, Biological Evaluation, and Mechanistic Analysis. Bioorg. Chem., 113.
  • Dong, (2020), Food Funct., 11, pp. 1122, 10.1039/C9FO01718F
  • Cordova, (2014), J. Mol. Cell. Cardiol., 72, pp. 250, 10.1016/j.yjmcc.2014.04.002
  • Kim, M., Lee, S., Lim, H., Lee, J., Park, J.-Y., Kwon, H.-J., Lee, I.-C., Ryu, Y.-B., Kim, J., and Shin, T. (2020). Oleanolic Acid Acetate Alleviates Symptoms of Experimental Autoimmune Encephalomyelitis in Mice by Regulating Toll-Like Receptor 2 Signaling. Front. Pharmacol., 11.
  • Dinh, (2016), J. Histochem. Cytochem., 64, pp. 237, 10.1369/0022155416631803
  • Oyedeji, (2015), Inflammation, 38, pp. 61, 10.1007/s10753-014-0007-y
  • Narożna, M., Krajka-Kuźniak, V., Bednarczyk-Cwynar, B., Kucińska, M., Kleszcz, R., Kujawski, J., Piotrowska-Kempisty, H., Plewiński, A., Murias, M., and Baer-Dubowska, W. (2021). Conjugation of Diclofenac with Novel Oleanolic Acid Derivatives Modulate Nrf2 and NF-κB Activity in Hepatic Cancer Cells and Normal Hepatocytes Leading to Enhancement of Its Therapeutic and Chemopreventive Potential. Pharmaceuticals, 14.
  • Murray, (2022), Lancet, 399, pp. 629, 10.1016/S0140-6736(21)02724-0
  • Kozai, (1987), Caries Res., 21, pp. 104, 10.1159/000261010
  • Meckes, (2007), J. Ethnopharmacol., 111, pp. 202, 10.1016/j.jep.2006.11.033
  • Woldemichael, (2003), Planta Med., 69, pp. 628, 10.1055/s-2003-41109
  • Cunha, (2010), Pharm. Biol., 48, pp. 166, 10.3109/13880200903062648
  • Fontanay, (2008), J. Ethnopharmacol., 120, pp. 272, 10.1016/j.jep.2008.09.001
  • Martins, (2011), Int. J. Antimicrob. Agents, 37, pp. 438, 10.1016/j.ijantimicag.2011.01.016
  • Grudniak, (2011), Curr. Microbiol., 62, pp. 1331, 10.1007/s00284-010-9866-0
  • Kurek, (2010), Antonie Van Leeuwenhoek, 97, pp. 61, 10.1007/s10482-009-9388-6
  • Kim, S., Lee, H., Lee, S., Yoon, Y., and Choi, K.-H. (2015). Antimicrobial Action of Oleanolic Acid on Listeria Monocytogenes, Enterococcus Faecium, and Enterococcus Faecalis. PLoS ONE, 10.
  • Khwaza, V., Oyedeji, O.O., and Aderibigbe, B.A. (2018). Antiviral Activities of Oleanolic Acid and Its Analogues. Molecules, 23.
  • Khusnutdinova, E.F., Sinou, V., Babkov, D.A., Kazakova, O., and Brunel, J.M. (2022). Development of New Antimicrobial Oleanonic Acid Polyamine Conjugates. Antibiotics, 11.
  • Vukomanovic, (2019), ACS Infect. Dis., 5, pp. 1581, 10.1021/acsinfecdis.9b00125
  • Zhou, (2020), ACS Omega, 5, pp. 11424, 10.1021/acsomega.0c00460
  • Zhu, (2001), Bioorg. Med. Chem. Lett., 11, pp. 3115, 10.1016/S0960-894X(01)00647-3
  • Yu, (2006), J. Med. Chem., 49, pp. 5462, 10.1021/jm0601912
  • Han, (2016), Med. Chem. Commun., 7, pp. 1932, 10.1039/C6MD00292G
  • Yan, W., Zhang, C., Li, B., Xu, X., Liang, M., Gu, S., Chu, F., Xu, B., Ren, J., and Wang, P. (2016). A Series of Oleanolic Acid Derivatives as Anti-Hepatitis B Virus Agents: Design, Synthesis, and In Vitro and In Vivo Biological Evaluation. Molecules, 21.
  • Ikeda, (2005), Biol. Pharm. Bull., 28, pp. 1779, 10.1248/bpb.28.1779
  • Malchoff, (1991), Conn. Med., 55, pp. 625
  • Taylor, (2012), Diabetes, 61, pp. 778, 10.2337/db12-0073
  • Tseng, (2023), Angew. Chem. Int. Ed., 62, pp. e202217809, 10.1002/anie.202217809
  • Compain, P. (2007). Iminosugar C-Glycosides: Synthesis and Biological Activity. Iminosugars, John Wiley & Sons, Ltd.
  • Baloyi, (2019), J. Diabetes Res., 2019, pp. 6753541, 10.1155/2019/6753541
  • McGee, (2010), Clin. Exp. Pharmacol. Physiol., 37, pp. 392, 10.1111/j.1440-1681.2009.05311.x
  • Zhou, X., Zeng, X.-Y., Wang, H., Li, S., Jo, E., Xue, C.C.L., Tan, M., Molero, J.C., and Ye, J.-M. (2014). Hepatic FoxO1 Acetylation Is Involved in Oleanolic Acid-Induced Memory of Glycemic Control: Novel Findings from Study 2. PLoS ONE, 9.
  • Luvuno, (2016), Afr. J. Tradit. Complement. Altern. Med., 13, pp. 8, 10.21010/ajtcam.v13i4.2
  • Su, (2018), Free Radic. Biol. Med., 124, pp. 122, 10.1016/j.freeradbiomed.2018.06.003
  • Chen, (2017), Br. J. Pharmacol., 174, pp. 2912, 10.1111/bph.13921
  • (2017), Arch. Pharm. Res., 40, pp. 550, 10.1007/s12272-016-0873-y
  • Yang, (2020), J. Enzym. Inhib. Med. Chem., 35, pp. 152, 10.1080/14756366.2019.1690481
  • Liu, (2013), Eur. J. Med. Chem., 63, pp. 511, 10.1016/j.ejmech.2013.03.001
  • Kim, (2004), Life Sci., 74, pp. 2769, 10.1016/j.lfs.2003.10.020
  • Liu, (2014), Chem. Biol. Interact., 221, pp. 88, 10.1016/j.cbi.2014.07.017
  • Xue, (2021), J. Agric. Food Chem., 69, pp. 7884, 10.1021/acs.jafc.1c02257
  • Yu, (2016), Mol. Pharm., 13, pp. 1699, 10.1021/acs.molpharmaceut.6b00129
  • Xiang, H., Han, Y., Zhang, Y., Yan, W., Xu, B., Chu, F., Xie, T., Jia, M., Yan, M., and Zhao, R. (2017). A New Oleanolic Acid Derivative against CCl4-Induced Hepatic Fibrosis in Rats. Int. J. Mol. Sci., 18.
  • Chu, F., Zhang, W., Guo, W., Wang, Z., Yang, Y., Zhang, X., Fang, K., Yan, M., Wang, P., and Lei, H. (2018). Oleanolic Acid-Amino Acids Derivatives: Design, Synthesis, and Hepatoprotective Evaluation In Vitro and In Vivo. Molecules, 23.
  • Lamptey, R.N.L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B., and Singh, J. (2022). A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci., 23.
  • Shi, (2021), Exp. Neurol., 343, pp. 113785, 10.1016/j.expneurol.2021.113785
  • Gudoityte, E., Arandarcikaite, O., Mazeikiene, I., Bendokas, V., and Liobikas, J. (2021). Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int. J. Mol. Sci., 22.
  • Zhang, (2018), Cell Death Discov., 4, pp. 48, 10.1038/s41420-018-0111-0
  • Zhang, (2016), Am. J. Chin. Med., 44, pp. 103, 10.1142/S0192415X16500075
  • Ning, (2015), Stem Cells Int., 2015, pp. 672312, 10.1155/2015/672312
  • Jo, (2017), Mol. Cells, 40, pp. 485, 10.14348/molcells.2017.0034
  • Sarkar, (2014), Food Chem. Toxicol., 66, pp. 224, 10.1016/j.fct.2014.01.020
  • Ndlovu, (2016), Neurotox. Res., 29, pp. 126, 10.1007/s12640-015-9567-3
  • Dong, (2019), Steroids, 149, pp. 108419, 10.1016/j.steroids.2019.05.011
  • Sapkota, (2022), Biomol. Ther., 30, pp. 55, 10.4062/biomolther.2021.154
  • Yuzhalin, (2024), Br. J. Cancer, 130, pp. 1078, 10.1038/s41416-024-02634-6
  • Vitale, (2023), Cell Death Differ., 30, pp. 1097, 10.1038/s41418-023-01153-w
  • Fan, (2018), Oncol. Lett., 15, pp. 2821
  • Kang, (2012), Med. Chem. Commun., 3, pp. 1245, 10.1039/c2md20051a
  • Yan, (2010), Toxicol. In Vitro, 24, pp. 842, 10.1016/j.tiv.2009.12.008
  • Duan, (2019), Anticancer Drugs, 30, pp. 812, 10.1097/CAD.0000000000000777
  • Shanmugam, (2012), Cancer Lett., 320, pp. 158, 10.1016/j.canlet.2012.02.037
  • Shanmugam, (2014), Cancer Lett., 346, pp. 206, 10.1016/j.canlet.2014.01.016
  • Yang, (2013), Stem Cells, 31, pp. 248, 10.1002/stem.1281
  • Borella, R., Forti, L., Gibellini, L., De Gaetano, A., De Biasi, S., Nasi, M., Cossarizza, A., and Pinti, M. (2019). Synthesis and Anticancer Activity of CDDO and CDDO-Me, Two Derivatives of Natural Triterpenoids. Molecules, 24.
  • Alabran, (2008), Cancer Biol. Ther., 7, pp. 709, 10.4161/cbt.7.5.5713
  • Yoo, (2012), Phytother. Res., 26, pp. 1541, 10.1002/ptr.4616
  • Fu, (2013), J. Med. Chem., 56, pp. 4641, 10.1021/jm400393u
  • Fukumura, (2009), J. Nat. Med., 63, pp. 181, 10.1007/s11418-008-0311-7
  • Jannus, F., Medina-O’Donnell, M., Rivas, F., Díaz-Ruiz, L., Rufino-Palomares, E.E., Lupiáñez, J.A., Parra, A., and Reyes-Zurita, F.J. (2020). A Diamine-PEGylated Oleanolic Acid Derivative Induced Efficient Apoptosis through a Death Receptor and Mitochondrial Apoptotic Pathway in HepG2 Human Hepatoma Cells. Biomolecules, 10.
  • Lisiak, N.M., Lewicka, I., Kaczmarek, M., Kujawski, J., Bednarczyk-Cwynar, B., Zaprutko, L., and Rubis, B. (2021). Oleanolic Acid’s Semisynthetic Derivatives HIMOXOL and Br-HIMOLID Show Proautophagic Potential and Inhibit Migration of HER2-Positive Breast Cancer Cells In Vitro. Int. J. Mol. Sci., 22.
  • Rivas, (2016), RSC Adv., 6, pp. 93590, 10.1039/C6RA18879F
  • Cohen, (2022), Exp. Dermatol., 31, pp. 1083, 10.1111/exd.14564