Variación de problemas de proporcionalidad para ayudar a los alumnos a superar sus dificultades. Una experiencia con futuros maestros

  1. María Burgos 1
  2. Jorhan J. Chaverri Hernández 2
  1. 1 Universidad de Granada (UGR)
  2. 2 Universidad de Costa Rica (UCR)
Aldizkaria:
Educación matemática

ISSN: 1665-5826 0187-8298

Argitalpen urtea: 2024

Alea: 36

Zenbakia: 2

Orrialdeak: 92-124

Mota: Artikulua

DOI: 10.24844/EM3602.04 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Beste argitalpen batzuk: Educación matemática

Laburpena

Research on the creation of mathematics problems for didactic purposes points to their close link with professional knowledge and competences. Thus, the aim of this paper is to describe and analyse how a group of 130 prospective primary school teachers vary a proportionality problem (comparison of ratios) given in a hypothetical classroom episode to address the difficulties encountered by students in solving it. We analyse whether these modifications are consistent with their didactic purposes and how they justify their decisions. We follow a mixed approach based on theoretical and methodological tools of the Ontosemiotic Approach and aspects of the creation of problems by variation. Among the results obtained, we highlight some shortcomings in the specialised knowledge of proportional reasoning, which prevent future teachers from creating variations of a problem to respond to this didactic-mathematical requirement. We conclude the need to incorporate this competence in teacher training programmes.

Erreferentzia bibliografikoak

  • Akay, H. y Boz, N. (2010). The Effect of Problem Posing Oriented Analyses-II Course on the Attitudes toward Mathematics and Mathematics Self-Efficacy of Elementary Prospective Mathematics Teachers. Australian Journal of Teacher Education, 35(1), 59–75. https://doi.org/10.14221/ajte.2010v35n1.6
  • Bayazit, I. y Kirnap-Donmez, S. (2017). Prospective teachers’ proficiencies at problem posing in the context of proportional reasoning. Turkish Journal of Computer and Mathematics Education, 8(1), 130–160. https://doi.org/10.16949/turkbilmat.303759
  • Buforn, A., Llinares, S. y Fernández, C. (2018). Características del conocimiento de los estudiantes para maestro españoles en relación con la fracción, razón y proporción. RMIE, 23(76), 229–251.
  • Buforn, A., Llinares, S., Fernández, C., Coles, A. y Brown, L. (2020). Pre-service teachers’ knowledge of the unitizing process in recognizing students’ reasoning to propose teaching decisions. International Journal of Mathematics Education in Science and Technology, 1–9. https://doi.org/10.1080/0020739X.2020.1777333
  • Burgos, M. y Chaverri, J. (2022). Conocimientos y competencias de futuros maestros para la creación de problemas de proporcionalidad. Acta Scientiae, 24(6), 270–306. https:// doi.org/10.17648/acta.scientiae.7061
  • Burgos, M y Chaverri, J. (2023). Explorando la percepción de futuros maestros de primaria sobre el pensamiento matemático de los alumnos en un problema de proporcionalidad. Aula Abierta, 52(1), 43–52. https://doi.org/10.17811/rifie.52.1.2023.43-52
  • Burgos, M. y Godino J. D. (2022a). Assessing the Epistemic Analysis Competence of Prospective Primary School Teachers on Proportionality Tasks. International Journal of Science and Mathematics Education, 20, 367–389. https://doi.org/10.1007/s10763- 020-10143-0 Burgos,
  • M. y Godino, J. D. (2022b). Prospective Primary School Teachers’ Competence for the Cognitive Analysis of Students’ Solutions to Proportionality Tasks. J Math Didakt, 43, 347–376. https://doi.org/10.1007/s13138-021-00193-4
  • Burgos, M., López-Martín, M. del M., Aguayo-Arriagada, C. y Albanese, V. (2022). Análisis cognitivo de tareas de comparación de probabilidades por futuro profesorado de Educación Primaria. Uniciencia, 36(1), 1–24. https://doi.org/10.15359/ru.36-1.38
  • Cai, J. y Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educational Studies in Mathematics, 105(3), 287–301. https://doi.org/10.1007/s10649-020-10008-x
  • Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D. y Sriraman, B. (2005). An empirical taxonomy of problem posing processes. ZDM, 37(3), 149–158. https://doi. org/10.1007/s11858-005-0004-6
  • Cohen, L., Manion, L. y Morrison, K. (2018). Research methods in education (8va ed.). Routledge. https://doi.org/10.4324/9781315456539
  • Fernández, C., Sánchez-Matamoros, G., Valls, J. y Callejo, M. L. (2018). Noticing students’ mathematical thinking: characterization, development, and contexts. Avances de Investigación en Educación Matemática, (13), 39–61. https://doi.org/10.35763/aiem. v0i13.229
  • Godino, J. D., Giacomone, B., Batanero, C. y Font, V. (2017). Enfoque Ontosemiótico de los Conocimientos y Competencias del Profesor de Matemáticas. Bolema, 31(57), 90–113. https://doi.org/10.1590/1980-4415v31n57a05
  • Grundmeier, T. (2015). Developing the Problem-Posing Abilities of Prospective Elementary and Middle School Teachers. En F.M. Singer et al. (Eds.), Mathematical Problem Posing, Research in Mathematics Education (pp. 411–431). https://doi.org/10.1007/978- 1-4614-6258-3_20
  • Hilton, A. y Hilton, G. (2019). Primary school teachers implementing structured mathematics interventions to promote their mathematics knowledge for teaching proportional reasoning. Journal of Mathematics Teacher Education, 22, 545–574. https://doi. org/10.1007/s10857-018-9405-7
  • Izsák, A. y Jacobson, E. (2017). Preservice teachers’ reasoning about relationships that are and are not proportional: A knowledge-in-pieces account. Journal for Research in Mathematics Education, 48(3), 300–339. https://doi.org/10.5951/jresematheduc.48.3.0300
  • Ivars, P., Fernández, C., Llinares, S. y Choy, B. H. (2018). Enhancing noticing: using a hypothetical learning trajectory to improve preservice primary teachers’ professional discourse. EURASIA Journal of Mathematics, Science and Technology Education, 14(11), em1599. https://doi.org/10.29333/ejmste/93421
  • Kılıç, Ç. (2017). A new problem-posing approach based on problem-solving strategy: Analyzing pre-service primary school teachers’ performance. Educational Sciences: Theory & Practice, 17, 771–789. https://doi.org/10.12738/estp.2017.3.0017
  • Lee, Y., Capraro, R. y Capraro, M. (2018). Mathematics Teachers’ Subject Matter Knowledge and Pedagogical Content Knowledge in Problem Posing. International Electronic Journal of Mathematics Education, 13(2), 75–90. https://doi.org/10.12973/iejme/2698
  • Leavy, A. y Hourigan, M. (2020). Posing mathematically worthwhile problems: developing the problem-posing skills of prospective teachers. Journal of Mathematics Teacher Education, 23, 341–361. https://doi.org/10.1007/s10857-018-09425-w
  • Livy, S. y Vale, C. (2011). First year pre-service teachers’ mathematical content knowledge: Methods of solution for a ratio question. Mathematics Teacher Education and Development, 1(2), 22–43.
  • Llinares, S., Ivars, P., Buforn, À. y Groenwald, C. (2019). «Mirar profesionalmente» las situaciones de enseñanza: una competencia basada en el conocimiento. En E. Badillo, N. Climent, C. Fernández y M. T. González (Eds.), Investigación sobre el profesor de matemáticas: formación, práctica de aula, conocimiento y competencia profesional (pp. 177-192). Salamanca: Ediciones Universidad Salamanca.
  • Malaspina, U. (2016). Creación de problemas: sus potencialidades en la enseñanza y aprendizaje de las Matemáticas. En A. Ruiz (Ed.), Cuadernos de Investigación y Formación en Educación Matemática (pp. 321–331). Universidad de Costa Rica.
  • Malaspina, U. y Vallejo, E. (2014). Creación de problemas en la docencia e investigación. En U. Malaspina (Ed.), Reflexiones y Propuestas en Educación Matemática (pp. 7–54). Editorial Moshera S.R.L.
  • Malaspina, U., Mallart, A. y Font, V. (2015). Development of teachers’ mathematical and didactic competencies by means of problem posing. En K. Krainer y N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 2861–2866). Proceedings of the CERME 9. https://hal. archives-ouvertes.fr/hal-01289630/document
  • Malaspina, U., Torres, C. y Rubio, N. (2019). How to stimulate in-service teachers’ didactic analysis competence by means of problem posing. En P. Liljedahl, y L. Santos-Trigo (Eds.), Mathematical Problem Solving (pp. 133–151). Suiza: Springer. https://doi. org/10.1007/978-3-030-10472-6_7
  • Mallart, A., Font, V. y Malaspina, U. (2016). Reflexión sobre el significado de qué es un buen problema de en la formación inicial de maestros. Perfiles educativos, 38(152), 14–30. https://doi.org/10.22201/iisue.24486167e.2016.152.57585
  • Mallart, A., Font, V. y Diez, J. (2018). Case Study on Mathematics Pre-service Teachers’ Difficulties in Problem Posing. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1465–1481. https://doi.org/10.29333/ejmste/83682
  • Mallart-Solaz, A. (2019). Interés de los futuros maestros en saber crear problemas de matemáticas para enseñar a resolverlos. Psicología Educativa, 25(1), 31–41. https:// doi.org/10.5093/psed2018a17
  • Milinković, J. (2015). Conceptualizing Problem Posing via Transformation. En J. Cai, N. Ellerton, y F.M. Singer (Eds.), Mathematical Problem Posing: From Research to Effective Practice (pp. 47–70). Springer. https://doi.org/10.1007/978-1-4614-6258-3_3
  • Ministerio de Educación y Formación Profesional (MEFP) (2022). Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. Boletín Oficial del Estado, 52 (I), 24386-24504
  • National Council Teacher Mathematics (NCTM) (2000). Principles and Standards for School Mathematics. Author. https://www.rainierchristian.org/NCTM_principles-and-standards-for-school-mathematics.pdf
  • Neill, D., Quesada, C. y Arce, J. (2018). Investigación cuantitativa y cualitativa. En D. Neill y L. Cortez (Coord.), Procesos y Fundamentos de la Investigación Científica (pp. 68–88). UTMACH.
  • OECD (2013). PISA 2012 Assessment and analytical framework. Mathematics, Reading, Science, Problem Solving and Financial Literacy. OECD Publishing. http://dx.doi. org/10.1787/9789264190511-en
  • Ontario Ministry of Education and Training (OMET) (2005). The Ontario Curriculum: Grades 11 and 12, business education. http://www.edu.gov.on.ca/eng/curriculum/ secondary/business1112curr
  • Pino-Fan, L., Báez-Huaiquián, D., Molina-Cabero, J. y Hernández-Arredondo, E. (2020). Criterios utilizados por profesores de matemáticas para el planteamiento de problemas en el aula. Uniciencia, 34(2), 114–136. https://doi.org/10.15359/ru.34-2.7
  • Piñeiro, J. L., Castro-Rodríguez, E. y Castro, E. (2019). Componentes de conocimiento del profesor para la enseñanza de la resolución de problemas en educación primaria. PNA 13(2), 104–129. https://doi.org/10.30827/pna.v13i2.7876 Serin
  • M. K. (2019). Analysis of the problems posed by pre-service primary school teachers in terms of type, cognitive structure and content knowledge. International Journal of Educational Methodology, 5(4), 577–590. https://doi.org/10.12973/ijem.5.4.577 Singer,
  • F. M., Ellerton, N. y Cai, J. (2013). Problem-posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83, 1–7. https://doi.org/10.1007/s10649-013-9478-2
  • Singer, F. y Voica, C. (2013). A problem-solving conceptual framework and its implications in designing problem-posing tasks. Educational studies in mathematics, 83(1), 9–26. https://doi.org/10.1007/s10649-012-9422-x
  • Tichá, M., y Hošpesová, A. (2013). Developing teachers’ subject didactic competence through problem posing. Educational Studies in Mathematics, 83(1), 133–143. https:// doi.org/10.1007/s10649-012-9455-1
  • Xie, J. y Masingila, J. (2017). Examining interactions between problem posing and problem solving with prospective primary teachers: A case of using fractions. Educational Studies in Mathematics, 96(1), 101–118. https://doi.org/10.1007/s10649-017-9760-9
  • Weiland,T., Orrill, C.H., Nagar, G.G., Brown, R. y Burke, J. (2020). Framing a robust understanding of proportional reasoning for teachers. Journal of Mathematics Teacher Education, 24(2), 179–202. https://doi.org/10.1007/s10857-019-09453-0