Bases para la aplicación de machine learning en el monitoreo y anticipación de crisis alimentarias en Centroamérica
- Miguel Angel García-Arias 1
- Lorena Aguilar
- Alfredo Tolón-Becerra 1
- Francisco J. Abarca-Álvarez 2
- Ronny Adrián Mesa-Acosta
- José Manuel Veiga López-Peña
-
1
Universidad de Almería
info
-
2
Universidad de Granada
info
ISSN: 0211-9803
Argitalpen urtea: 2024
Alea: 44
Zenbakia: 2
Orrialdeak: 417-447
Mota: Artikulua
Beste argitalpen batzuk: Anales de geografía de la Universidad Complutense
Laburpena
The article offers a detailed and updated review on the application of data science tools based on machine learning algorithms in order to predict the short and medium term probability of food crises in territories of countries with high vulnerability to this type of situation. After a brief review of the definition of food security and its metrics, the main international efforts are described to monitor the agroclimatic, economic and sociopolitical factors that most affect the nutritional deterioration of population groups or specific geographic areas, and then generate alerts that trigger humanitarian assistance to prevent the increase in hunger and its effects on the health of those who suffer from it. Based on the review carried out, a prediction model adapted to the context of the Central American countries is proposed, in which structural variables are considered to be used in the annual determination of food vulnerability profiles, as well as others subject to permanent changes and that therefore allow the identification of shocks or disturbances that can impact food security. The proposed model seeks to improve decision-making and prioritization of resources and humanitarian assistance in regions with limited data availability.
Erreferentzia bibliografikoak
- Abarca-Álvarez, F. J., Méndez, C., Torres-Parejo, U., & García-Arias, M. A. (2022). Mejora de la toma de decisiones en la asistencia humanitaria mediante el uso de metodologías del campo de la Inteligencia Artificial. In La transversalidad de la investigación en comunicación (pp. 587-609). Dykinson.
- Alpízar, F., Saborío-Rodríguez, M., Martínez-Rodríguez, M. R., Viguera, B., Vignola, R., Capitán, T., & Harvey, C. A. (2020). Determinants of food insecurity among smallholder farmer households in Central America: recurrent versus extreme weather-driven events. Regional Environmental Change, 20, 1-16.
- Andrée, B. P. J. (2022). Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts. World Bank Policy Research Working Papers.
- Andrée, B. P. J., Chamorro, A., Kraay, A., Spencer, P., & Wang, D. (2020). Predicting food crises. World Bank Policy Research Working Paper 9412.
- Aurino, E. (2014). Selecting a core set of indicators for monitoring global food security: A methodological proposal. FAO food and nutrition series.
- Backer, D., & Billing, T. (2021). Validating famine early warning systems network projections of food security in Africa, 2009–2020. Global Food Security, 29, 100510.
- Backer, D., & Billing, T. (2024). Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators. World Development, 176, 106484.
- Berry, E. M., Dernini, S., Burlingame, B., Meybeck, A., & Conforti, P. (2015). Food security and sustainability: can one exist without the other?. Public health nutrition, 18(13), 2293-2302.
- Bitew, F. H., Sparks, C. S., & Nyarko, S. H. (2022). Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia. Public health nutrition, 25(2), 269-280.
- Browne, C., Matteson, D. S., McBride, L., Hu, L., Liu, Y., Sun, Y., ... & Barrett, C. B. (2021). Multivariate random forest prediction of poverty and malnutrition prevalence. PloS one, 16(9), e0255519.
- Busker, T. S., van den Hurk, B., de Moel, H., van den Homberg, M., van Straaten, C., Odongo, R. A., & Aerts, J. C. (2023). Predicting Food-Security Crises in the Horn of Africa Using Machine Learning. Authorea Preprints.
- Christensen, C., Wagner, T., & Langhals, B. (2021). Year-independent prediction of food insecurity using classical and neural network machine learning methods. Ai, 2(2), 244-260.
- Deléglise, H., Interdonato, R., Bégué, A., d’Hôtel, E. M., Teisseire, M., & Roche, M. (2022). Food security prediction from heterogeneous data combining machine and deep learning methods. Expert Systems with Applications, 190, 116189.
- Devereux, S., Sabates-Wheeler, R., & Longhurst, R. (Eds.). (2012). Seasonality, rural livelihoods and development. New York, NY, USA:: Earthscan.
- El Naqa, I., & Murphy, M. J. (2015). What is machine learning? (pp. 3-11). Springer International Publishing.
- FAO, FIDA, OMS, PMA y UNICEF. (2023). El estado de la seguridad alimentaria y la nutrición en el mundo 2023. Urbanización, transformación de los sistemas agroalimentarios y dietas saludables a lo largo del continuo rural-urbano. Roma, FAO. https://doi.org/10.4060/cc3017es
- FAO (1996). Rome Declaration on Food Security and World Food Summit Plan of Action. Rome: FAO.FAO (2009). Declaration of the World Food Summit on Food Security. Rome: FAO.
- Foini, P., Tizzoni, M., Martini, G., Paolotti, D., & Omodei, E. (2023). On the forecastability of food insecurity. Scientific Reports, 13(1), 2793.
- Frankenberger, T. R., & Verduijn, R. (2011). Integrated Food Security Phase Classification (IPC); End of Project Evaluation. Rome: FAO. https://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/1_IPC_Glob_Proj_Eval_04_11_Report.pdf
- FSIN & Global Network Against Food Crises (2021). Global Report on Food Crises 2021. Rome.https://www.fsinplatform.org/global-report-food-crises-2021
- FSIN & Global Network Against Food Crises. (2023). Global Report on Food Crises 2023. Rome.https://www.fsinplatform.org/global-report-food-crises-2023
- FSIN & Global Network Against Food Crises. (2024). Global Report on Food Crises 2024. Rome. https://www.fsinplatform.org/report/global-report-food-crises-2024/
- Gao, C., Fei, C. J., McCarl, B. A., & Leatham, D. J. (2020). Identifying Vulnerable households using machine learning. Sustainability, 12(15), 6002.
- Herteux, J., Räth, C., Baha, A., Martini, G., & Piovani, D. (2023). Forecasting Trends in Food Security: a Reservoir Computing Approach. arXiv preprint arXiv:2312.00626.
- Hoddinott, J. (1999). Choosing outcome indicators of household food security. International Food Policy Research Institute.
- Hossain, M., Mullally, C., & Asadullah, M. N. (2019). Alternatives to calorie-based indicators of food security: An application of machine learning methods. Food policy, 84, 77-91.
- IPC Global Partners. (2019). The Integrated Food Security Phase Classification Technical Manual Version 3.0. Rome: FAO. https://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/IPC_Technical_Manual_3_Final.pdf
- Jones, A. D., Ngure, F. M., Pelto, G., & Young, S. L. (2013). What are we assessing when we measure food security? A compendium and review of current metrics. Advances in nutrition, 4(5), 481-505.
- Kaut, J., Bakker, E., van Uffelen, G. J., Cruijssen, F., & Malkowsky, C. (2022). From insight to foresight: using data to improve food and nutrition outcomes in protracted food crises in the Horn of Africa (No. WCDI-22-217). Wageningen Centre for Development Innovation.
- Krishnamurthy, P. K., Choularton, R. J., & Kareiva, P. (2020a). Dealing with uncertainty in famine predictions: How complex events affect food security early warning skill in the Greater Horn of Africa. Global Food Security, 26, 100374.
- Krishnamurthy R, P. K., Fisher, J. B., Schimel, D. S., & Kareiva, P. M. (2020b). Applying tipping point theory to remote sensing science to improve early warning drought signals for food security. Earth's Future, 8(3), e2019EF001456.
- Laney, D., and L. Kart. 2012. Emerging Role of the Data Scientist and the Art of Data Science. Report G00227058. Stamford, CT: Gartner, Inc. https://www.gartner.com/en/documents/1955615
- Lentz, E. C., Michelson, H., Baylis, K., & Zhou, Y. (2019). A data-driven approach improves food insecurity crisis prediction. World Development, 122, 399-409.
- Martini, G., Bracci, A., Riches, L., Jaiswal, S., Corea, M., Rivers, J., ... & Omodei, E. (2022). Machine learning can guide food security efforts when primary data are not available. Nature Food, 3(9), 716-728.
- Meerza, S. I. A., Meerza, S. I. A., & Ahamed, A. (2021). Food insecurity through machine learning lens: identifying vulnerable households. Selected Paper prepared for presentation at the 2021 Agricultural & Applied Economics Association Annual Meeting, Austin, TX, August 1 –August. https://ageconsearch.umn.edu/nanna/record/314072/files/Abstracts_21_06_15_22_32_25_65__173_216_85_243_0.pdf?withWatermark=0&withMetadata=0&version=1®isterDownload=1
- Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071-22080.
- Norberg, J. (2017). Progress: Ten reasons to look forward to the future. Simon and Schuster.
- Oakford, S. (2019). Deaths before data. Significance, 16(1), 29-31.
- Qasrawi, R., Hoteit, M., Tayyem, R., Bookari, K., Al Sabbah, H., Kamel, I., ... & Al-Halawa, D. A. (2023). Machine learning techniques for the identification of risk factors associated with food insecurity among adults in Arab countries during the COVID-19 pandemic. BMC public health, 23(1), 1805.
- Sotelo Pérez I., Sotelo Pérez, M. y Sotelo Navalpotro J. A. (2023). Análisis geográfico regional de la “huella hídrica” española: Bases para la planificación turística. Cuadernos de turismo, ISSN 1139-7861, Nº. 51 (Ejemplar dedicado a: Enero - Junio), págs. 349-383
- Sotelo Pérez I. y Sotelo Navalpotro J. A. (2022). Aspectos científicos del estudio del Medio Ambiente, en el contexto del Espacio Geográfico, desde el ámbito del Estado Constitucional de Derecho y el Estado Jurisprudencial de Derecho. Observatorio Medioambiental, 25, 65-90.
- UNISDR (United Nations International Strategy for Disaster Reduction). 2017. Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. Geneva: UNISDR. https://www.preventionweb.net/files/50683_oiewgreportenglish.pdf.
- Uskov, V. L., Bakken, J. P., Shah, A., Krock, T., Uskov, A., Syamala, J., & Rachakonda, R. (2019). Smart learning analytics: conceptual modeling and agile engineering. In Smart Education and e-Learning 2018 5 (pp. 3-16). Springer International Publishing.
- Villacis, A., Badruddoza, S., Mayorga, J., & Mishra, A. K. (2022). Using machine learning to test the consistency of food insecurity measures. Selected Paper prepared for presentation at the 2021 Agricultural & Applied Economics Association Annual Meeting, Austin, TX, August 1 – August
- Westerveld, J. J., van den Homberg, M. J., Nobre, G. G., van den Berg, D. L., Teklesadik, A. D., & Stuit, S. M. (2021). Forecasting transitions in the state of food security with machine learning using transferable features. Science of the Total Environment, 786, 147366.
- Zhou, Y. (2020). Three essays on machine learning and food security. Doctoral dissertation, University of Illinois at Urbana-Champaign.