Additional file 2 of Gut microbiome in endometriosis: a cohort study on 1000 individuals

  1. Pérez-Prieto, Inmaculada 12
  2. Vargas, Eva 123
  3. Salas-Espejo, Eduardo 1
  4. Lüll, Kreete 4
  5. Canha-Gouveia, Analuce 125
  6. Pérez, Laura Antequera 1
  7. Fontes, Juan 26
  8. Salumets, Andres 478
  9. Andreson, Reidar 4
  10. Aasmets, Oliver 4
  11. Whiteson, Katrine 9
  12. Org, Elin 4
  13. Altmäe, Signe 1247
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 Instituto de Investigación Biosanitaria de Granada
    info

    Instituto de Investigación Biosanitaria de Granada

    Granada, España

  3. 3 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  4. 4 University of Tartu
    info

    University of Tartu

    Tartu, Estonia

    ROR https://ror.org/03z77qz90

  5. 5 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

  6. 6 Hospital Universitario Virgen de las Nieves
    info

    Hospital Universitario Virgen de las Nieves

    Granada, España

    ROR https://ror.org/02f01mz90

  7. 7 Karolinska Institute
    info

    Karolinska Institute

    Estocolmo, Suecia

    ROR https://ror.org/056d84691

  8. 8 Competence Centre on Health Technologies (Estonia)
  9. 9 University of California, Irvine
    info

    University of California, Irvine

    Irvine, Estados Unidos

    ROR https://ror.org/04gyf1771

Editor: figshare

Año de publicación: 2024

Tipo: Dataset

CC BY 4.0

Resumen

Additional file 2: Tables S1-S7. Table S1- Correlation analysis between gut enterotypes and clinical factors. Table S2- Differential abundance analysis in endometriosis and control groups. Species with a prevalence > 10% and relative abundance ≥ 0.1% were compared in endometriosis and control groups using an Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). Table S3- Differential abundance analysis in endometriosis and control groups. KEGG orthologs (KO) with a prevalence > 10% and relative abundance ≥ 0.1% were compared in endometriosis and control groups using an Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). Table S4- Differential abundance analysis in endometriosis and control groups. EggNOG orthologs with a prevalence > 10% and relative abundance ≥ 0.1% were compared in endometriosis and control groups using an Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). Table S5- Sensitivity differential abundance analysis in endometriosis and control groups. Species with a prevalence > 10% and relative abundance ≥ 0.1% were compared in endometriosis and control groups after excluding women with age > 50, using an Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). Table S6- Sensitivity differential abundance analysis in endometriosis and control groups. KEGG orthologs (KO) with a prevalence > 10% and relative abundance ≥ 0.1% were compared in endometriosis and control groups after excluding women with age > 50, using an Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). Table S7- Estrogen path enzymes with ALDEx2 analysis between endometriosis and control groups.

Referencias bibliográficas

  • 10.1016/s0140-6736(21)00389-5
  • 10.1007/s12522-016-0237-9
  • 10.4274/jcrpe.galenos.2019.2019.s0217
  • 10.1038/nrendo.2013.255
  • 10.1038/s41574-019-0245-z
  • 10.1038/s41467-023-43913-9
  • 10.1186/s40168-020-00875-0
  • 10.1056/nejmra1600266
  • 10.1038/nature08821
  • 10.1038/nature05414
  • 10.1038/nri.2017.7
  • 10.1038/s41579-020-0433-9
  • 10.1111/nyas.14107
  • 10.1016/s1474-4422(19)30356-4
  • 10.1038/s41585-019-0250-y
  • 10.1016/j.fertnstert.2023.03.032
  • 10.1093/humupd/dmab035
  • 10.1016/j.fertnstert.2016.10.022
  • 10.1097/cm9.0000000000000569
  • 10.1016/j.maturitas.2017.06.025
  • 10.3389/fendo.2023.1110824
  • 10.1007/s13669-017-0187-1
  • 10.1093/ije/dyt268
  • 10.1093/humupd/dmz014
  • 10.1056/nejmra1810764
  • 10.1016/j.rbmo.2019.11.003
  • 10.1093/bioinformatics/btp336
  • 10.1186/2047-217x-1-18
  • 10.1093/bioinformatics/btl158
  • 10.1002/0471250953.bi1111s44
  • 10.1038/nmeth.3176
  • 10.1371/journal.pone.0061217
  • 10.21105/joss.03201
  • 10.1007/978-3-319-24277-4
  • 10.1038/s41467-020-17041-7
  • 10.1016/j.str.2017.05.003
  • 10.1093/nar/gkab1112
  • 10.1371/journal.pone.0067019
  • 10.3389/fgene.2022.917926
  • 10.1093/bioinformatics/bti430
  • 10.1093/nar/gkw1092
  • 10.1038/s41598-021-98380-3
  • 10.1186/s12941-020-00356-0
  • 10.1093/humrep/deab009
  • 10.1038/s41598-019-39700-6
  • 10.1007/s43032-021-00506-5
  • 10.1007/s00404-021-06057-z
  • 10.1007/s43032-019-00113-5
  • 10.1126/scitranslmed.add1531
  • 10.1093/humupd/dmt048
  • 10.1038/nrc2222
  • 10.1097/00004347-199701000-00008
  • 10.1210/jcem-70-5-1319
  • 10.1210/en.2006-0486
  • 10.1016/j.fertnstert.2007.08.014
  • 10.3389/fendo.2021.794496