FRANCISCO
HERRERA TRIGUERO
CATEDRÁTICO DE UNIVERSIDAD
ALBERTO LUIS
FERNÁNDEZ HILARIO
CATEDRÁTICO DE UNIVERSIDAD
Publicaciones en las que colabora con ALBERTO LUIS FERNÁNDEZ HILARIO (105)
2022
-
FW-SMOTE: A feature-weighted oversampling approach for imbalanced classification
Pattern Recognition, Vol. 124
2021
-
Learning interpretable multi-class models by means of hierarchical decomposition: Threshold Control for Nested Dichotomies
Neurocomputing, Vol. 463, pp. 514-524
-
Revisiting data complexity metrics based on morphology for overlap and imbalance: snapshot, new overlap number of balls metrics and singular problems prospect
Knowledge and Information Systems, Vol. 63, Núm. 7, pp. 1961-1989
-
SOUL: Scala Oversampling and Undersampling Library for imbalance classification
SoftwareX, Vol. 15
2020
-
HFER: Promoting explainability in fuzzy systems via hierarchical fuzzy exception rules
IEEE International Conference on Fuzzy Systems
2019
-
A Metahierarchical Rule Decision System to Design Robust Fuzzy Classifiers Based on Data Complexity
IEEE Transactions on Fuzzy Systems, Vol. 27, Núm. 4, pp. 701-715
-
A multi-objective evolutionary fuzzy system to obtain a broad and accurate set of solutions in intrusion detection systems
Soft Computing, Vol. 23, Núm. 4, pp. 1321-1336
-
An analysis of local and global solutions to address big data imbalanced classification: A case study with smote preprocessing
Communications in Computer and Information Science
-
Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to?
IEEE Computational Intelligence Magazine, Vol. 14, Núm. 1, pp. 69-81
-
Evolutionary fuzzy systems: A case study for intrusion detection systems
Studies in Computational Intelligence (Springer Verlag), pp. 169-190
-
Guest Editorial: Computational Intelligence for Big Data Analytics
Cognitive Computation
2018
-
Big Data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce
Information Fusion, Vol. 42, pp. 51-61
-
Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach
Knowledge and Information Systems, Vol. 56, Núm. 1, pp. 55-84
-
Imbalance: Oversampling algorithms for imbalanced classification in R
Knowledge-Based Systems, Vol. 161, pp. 329-341
-
NMC, Nearest Matrix Classification: a new combination model for pruning one-vs-one ensembles by transforming the aggregation problem
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018): avances en Inteligencia Artificial. 23-26 de octubre de 2018 Granada, España
-
Pareto based ensemble with feature and instance selection for learning from multi-class imbalanced datasets
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018): avances en Inteligencia Artificial. 23-26 de octubre de 2018 Granada, España
-
SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary
Journal of Artificial Intelligence Research, Vol. 61, pp. 863-905
-
SMOTE-BD: an Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
Journal of Computer Science and Technology, Vol. 18, Núm. 3
-
Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers
BMC Bioinformatics, Vol. 19, Núm. 1
2017
-
A pareto-based ensemble with feature and instance selection for learning from multi-class imbalanced datasets
International Journal of Neural Systems, Vol. 27, Núm. 6