JAVIER
POYATOS AMADOR
Investigador en el període 2024-2024
DANIEL
MOLINA CABRERA
PROFESOR TITULAR DE UNIVERSIDAD
Publicacions en què col·labora amb DANIEL MOLINA CABRERA (8)
2024
2023
-
EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep neural networks
Neural Networks, Vol. 158, pp. 59-82
-
Multiobjective evolutionary pruning of Deep Neural Networks with Transfer Learning for improving their performance and robustness
Applied Soft Computing, Vol. 147
2022
-
Optimización inspirada en la naturaleza y en la biología: lo bueno, lo malo, lo feo y lo esperanzador
Revista DYNA, Vol. 97, Núm. 2, pp. 114-117
2021
-
A prescription of methodological guidelines for comparing bio-inspired optimization algorithms
Swarm and Evolutionary Computation, Vol. 67
-
Lights and shadows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges
Information Fusion, Vol. 67, pp. 161-194
-
More is not Always Better: Insights from a Massive Comparison of Meta-heuristic Algorithms over Real-Parameter Optimization Problems
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
2020
-
Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations
Cognitive Computation, Vol. 12, Núm. 5, pp. 897-939