SERGIO
GONZÁLEZ VÁZQUEZ
Investigador en el periodo 2016-2019
Publicaciones (12) Publicaciones de SERGIO GONZÁLEZ VÁZQUEZ
2021
-
Fuzzy k-nearest neighbors with monotonicity constraints: Moving towards the robustness of monotonic noise
Neurocomputing, Vol. 439, pp. 106-121
2020
-
A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities
Information Fusion, Vol. 64, pp. 205-237
-
Preprocessing methodology for time series: An industrial world application case study
Information Sciences, Vol. 514, pp. 385-401
2019
-
Chain based sampling for monotonic imbalanced classification
Information Sciences, Vol. 474, pp. 187-204
2018
-
"k"-vecinos más cercanos difuso para clasificación monotónica
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018): avances en Inteligencia Artificial. 23-26 de octubre de 2018 Granada, España
-
DRCW-ASEG: One-versus-One distance-based relative competence weighting with adaptive synthetic example generation for multi-class imbalanced datasets
Neurocomputing, Vol. 285, pp. 176-187
2017
-
Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets
Pattern Recognition, Vol. 70, pp. 12-24
-
Evolutionary Fuzzy Rule-Based Methods for Monotonic Classification
IEEE Transactions on Fuzzy Systems, Vol. 25, Núm. 6, pp. 1376-1390
-
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
International Journal of Computational Intelligence Systems, Vol. 10, Núm. 1, pp. 1238-1249
2016
-
Managing monotonicity in classification by a pruned adaboost
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2015
-
Managing monotonicity in classification by a pruned random forest
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
-
Monotonic Random Forest with an Ensemble Pruning Mechanism based on the Degree of Monotonicity
New Generation Computing, Vol. 33, Núm. 4, pp. 367-388