Publicaciones en colaboración con investigadores/as de Universidad de Almería (41)

2022

  1. The multiColl Package Versus Other Existing Packages in R to Detect Multicollinearity

    Computational Economics, Vol. 60, Núm. 2, pp. 439-450

2021

  1. A Guide to Using the R Package “multiColl” for Detecting Multicollinearity

    Computational Economics, Vol. 57, Núm. 2, pp. 529-536

2020

  1. A Geometrical Interpretation of Collinearity: A Natural Way to Justify Ridge Regression and Its Anomalies

    International Statistical Review, Vol. 88, Núm. 3, pp. 776-792

  2. Comment on “A Note on Collinearity Diagnostics and Centering” by Velilla (2018)

    American Statistician, Vol. 74, Núm. 1, pp. 68-71

  3. Detection of near-nulticollinearity through centered and noncentered regression

    Mathematics, Vol. 8, Núm. 6

  4. Raise regression: Types of raising and mean square error

    XXXIII Congreso Internacional de economía aplicada Asepelt 2019: economía azul

  5. Residualization: justification, properties and application

    Journal of Applied Statistics, Vol. 47, Núm. 11, pp. 1990-2010

  6. The VIF and MSE in raise regression

    Mathematics, Vol. 8, Núm. 4

2018

  1. Transformation of variables and the condition number in ridge estimation

    Computational Statistics, Vol. 33, Núm. 3, pp. 1497-1524

  2. Variance Inflation Factor and Condition Number in multiple linear regression

    Journal of Statistical Computation and Simulation, Vol. 88, Núm. 12, pp. 2365-2384

2017

  1. A NOTE ABOUT THE PERT CONSTANT VARIANCE ASSUMPTION

    11TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS

  2. A generalized method for valuing agricultural farms under uncertainty

    Land Use Policy, Vol. 65, pp. 121-127

  3. A note about the corrected VIF

    Statistical Papers, Vol. 58, Núm. 3, pp. 929-945

  4. ANALYSING THE INTERACTION BETWEEN THE PIB AND THE EDUCATION TO EXPLAIN THE CO2 EMISSIONS

    11TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS

  5. Regresión con variables ortogonales y regresión alzada en el modelo STIRPAT

    Estudios de economía aplicada, Vol. 35, Núm. 3, pp. 717-734