CIENCIAS DE LA COMPUTACIÓN E INTELIGENCIA ARTIFICIAL
DEPARTAMENTO
FRANCISCO DAVID
CHARTE LUQUE
Investigador no período 2018-2022
Publicacións nas que colabora con FRANCISCO DAVID CHARTE LUQUE (20)
2022
-
A tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challenges
Information Fusion
-
A tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challenges
Information Fusion, Vol. 78, pp. 232-253
-
Mejoras en tratamiento de problemas de clasificación con modelos basados en autoencoders
Mejoras en tratamiento de problemas de clasificación con modelos basados en autoencoders
-
Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, Núm. 12, pp. 9549-9560
2021
-
Revisiting data complexity metrics based on morphology for overlap and imbalance: snapshot, new overlap number of balls metrics and singular problems prospect
Knowledge and Information Systems, Vol. 63, Núm. 7, pp. 1961-1989
-
Slicer: Feature Learning for Class Separability with Least-Squares Support Vector Machine Loss and COVID-19 Chest X-Ray Case Study
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
-
Slicer: feature Learning for Class Separability with Least-Squares Support Vector Machine Loss and COVID-19 Chest X-Ray Case Study
Hybrid Artificial Intelligent Systems: 16th International Conference, HAIS 2021. Bilbao, Spain. September 22–24, 2021. Proceedings
2020
-
An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges
Neurocomputing, Vol. 404, pp. 93-107
-
Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications
Neurocomputing, Vol. 410, pp. 237-270
-
COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images
IEEE Journal of Biomedical and Health Informatics, Vol. 24, Núm. 12, pp. 3595-3605
2019
-
A Showcase of the Use of Autoencoders in Feature Learning Applications
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
-
A showcase of the use of autoencoders in feature learning applications
From Bioinspired Systems and Biomedical Applications to Machine Learning: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part II (Springer Suiza), pp. 412-421
-
A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations
Progress in Artificial Intelligence, Vol. 8, Núm. 1
-
Ruta: Implementations of neural autoencoders in R
Knowledge-Based Systems, Vol. 174, pp. 4-8
2018
-
A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
Information Fusion, Vol. 44, pp. 78-96
-
A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018): avances en Inteligencia Artificial. 23-26 de octubre de 2018 Granada, España
-
Nuevas arquitecturas hardware de procesamiento de alto rendimiento para aprendizaje profundo
Enseñanza y aprendizaje de ingeniería de computadores: Revista de Experiencias Docentes en Ingeniería de Computadores, Núm. 8, pp. 67-84
-
Tips, guidelines and tools for managing multi-label datasets: The mldr.datasets R package and the Cometa data repository
Neurocomputing, Vol. 289, pp. 68-85
2016
-
R ultimate multilabel dataset repository
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2015
-
Working with multilabel datasets in R: The mldr package
R Journal, Vol. 7, Núm. 2, pp. 149-162