Protección cardiovascular con flavonoidesenigma farmacocinético

  1. Juan Duarte
  2. Francisco Pérez-Vizcaíno
Revista:
Ars pharmaceutica

ISSN: 2340-9894 0004-2927

Año de publicación: 2015

Volumen: 56

Número: 4

Páginas: 193-200

Tipo: Artículo

DOI: 10.4321/S2340-98942015000400002 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ars pharmaceutica

Resumen

Objetivos: Los flavonoides ejercen efectos beneficiosos en la prevención de las enfermedades cardiovasculares. En esta revisión trataremos de clarificar algunas preguntas fundamentales respecto a la eficacia, mecanismo de acción y biodisponibilidad de uno de los flavonoides dietéticos más abundante, la quercetina. Métodos: Se utilizó la base de datos de la National Library of Medicine, Washington, DC (MEDLINE: PubMed). Se recopilaron todos los estudios en animales y en humanos disponibles online desde la creación de la base de datos hasta Noviembre de 2015. Resultados: La quercetina produce un efecto vasodilatador y antihipertensor en modelos animales y en individuos hipertensos. Es eficaz en todos los modelos de hipertensión analizados, independientemente del origen de la hipertensión, del estado del sistema renina-angiotensina, del estrés oxidativo, del óxido nítrico y de otros factores. Paradójicamente, a pesar de ejercer efectos sistémicos biológicamente demostrables, no se encuentra en el plasma tras su administración oral y sus metabolitos circulantes muestran una débil actividad in vitro. La quercetina es extensamente metabolizada en derivados metilados y glucurono- y sulfo-conjugados, que son las formas circulantes en el plasma; y glucurono-, pero no sulfo-conjugados, pueden ser hidrolizados a nivel vascular, produciendo la aglicona matriz que se acumula en los tejidos. La conjugación es un proceso reversible y, al menos con respecto a los efectos vasodilatador y antihipertensivo, el ciclo de conjugación-deconjugación parece ser un requisito absoluto. Conclusiones: Los glucurono-conjugados transportan la quercetina y su forma metilada, y liberan en los tejidos la aglicona libre, que es el efector final.

Referencias bibliográficas

  • Perez-Vizcaino, F, Duarte, J. (2010). Flavonols and cardiovascular disease. Mol Aspects Med.. 31. 478-494
  • Martínez-Flórez, S, González-Gallego, J, Culebras, JM, Tuñón, MJ. (2002). Flavonoids: properties and anti-oxidizing action. Nutr Hosp.. 17. 271-278
  • Hertog, MG, Feskens, EJ, Hollman, PC, Katan, MB, Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 342. 1007-1011
  • Manach, C, Scalbert, A, Morand, C, Remesy, C, Jiménez, L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr.. 79. 727-747
  • Geleijnse, JM, Launer, LJ, Van der Kuip, DA, Hofman, A, Witteman, JC. (2002). Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr.. 75. 880-886
  • Hertog, MG, Bueno-de-Mesquita, HB, Fehily, AM, Sweetnam, PM, Elwood, PC, Kromhout, D. (1996). Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev.. 5. 673-677
  • Huxley, RR, Neil, HA. (2003). The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr.. 57. 904-908
  • Miedema, MD, Petrone, A, Shikany, JM, Greenland, P, Lewis, CE, Pletcher, MJ. (2015). The Association of Fruit and Vegetable Consumption During Early Adulthood With the Prevalence of Coronary Artery Calcium After 20 Years of Follow-Up: The CARDIA Study. Circulation.
  • Duarte, J, Perez-Vizcaino, F, Utrilla, P, Jiménez, J, Tamargo, J, Zarzuelo, A. (1993). Vasodilatory effects of flavonoids in rat aortic smooth muscle: Structure-activity relationships. Gen Pharmacol.. 24. 857-862
  • Carlstrom, J, Symons, JD, Wu, TC, Bruno, RS, Litwin, SE, Jalili, T. (2007). A quercetin supplemented diet does not prevent cardiovascular complications in spontaneously hypertensive rats. J Nutr.. 137. 628-633
  • Machha, A, Mustafa, MR. (2005). Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J Cardiovasc Pharmacol.. 46. 36-40
  • Romero, M, Jimenez, R, Sanchez, M, Lopez-Sepulveda, R, Zarzuelo, MJ, O'Valle, F. (2009). Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis. 202. 58-67
  • Sanchez, M, Galisteo, M, Vera, R, Villar, IC, Zarzuelo, A, Tamargo, J. (2006). Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens.. 24. 75-84
  • Duarte, J, Jimenez, R, O'Valle, F, Galisteo, M, Perez-Palencia, R, Vargas, F. (2002). Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats. J Hypertens.. 20. 1843-1854
  • Galisteo, M, Garcia-Saura, MF, Jimenez, R, Villar, IC, Wangensteen, R, Zarzuelo, A. (2004). Effects of quercetin treatment on vascular function in deoxycorticosterone acetate-salt hypertensive rats: Comparative study with verapamil. Planta Med.. 70. 334-341
  • Garcia-Saura, MF, Galisteo, M, Villar, IC, Bermejo, A, Zarzuelo, A, Vargas, F. (2005). Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem.. 270. 147-155
  • Aoi, W, Niisato, N, Miyazaki, H, Marunaka, Y. (2004). Flavonoid-induced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat. Biochem Biophys Res Commun.. 315. 892-896
  • Mackraj, I, Govender, T, Ramesar, S. (2008). The antihypertensive effects of quercetin in a salt-sensitive model of hypertension. J Cardiovasc Pharmacol.. 51. 239-245
  • Jalili, T, Carlstrom, J, Kim, S, Freeman, D, Jin, H, Wu, TC. (2006). Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. J Cardiovasc Pharmacol.. 47. 531-541
  • Rivera, L, Moron, R, Sanchez, M, Zarzuelo, A, Galisteo, M. (2008). Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring). 16. 2081-2087
  • Yamamoto, Y, Oue, E. (2006). Antihypertensive effect of quercetin in rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem.. 70. 933-939
  • Barker, DJ. (1998). In utero programming of chronic disease. Clin Sci (Lond). 95. 115-28
  • Buckley, AJ, Keseru, B, Briody, J, Thompson, M, Ozanne, SE, Thompson, CH. (2005). Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism. 54. 500-507
  • Liang, C, Oest, ME, Prater, MR. (2009). Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol.. 86. 377-384
  • Turnbull, F. (2003). Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 362. 1527-1535
  • Edwards, RL, Lyon, T, Litwin, SE, Rabovsky, A, Symons, JD, Jalili, T. (2007). Quercetin reduces blood pressure in hypertensive subjects. J Nutr.. 137. 2405-2411
  • Egert, S, Boesch-Saadatmandi, C, Wolffram, S, Rimbach, G, Muller, MJ. (2010). Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr.. 140. 278-284
  • Conquer, JA, Maiani, G, Azzini, E, Raguzzini, A, Holub, BJ. (1998). Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr.. 128. 593-597
  • Perez, A, Gonzalez-Manzano, S, Jimenez, R, Perez-Abud, R, Haro, JM, Osuna, A. (2014). The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity. Pharmacol Res.. 89. 11-8
  • Manach, C, Williamson, G, Morand, C, Scalbert, A, Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans: I. Review of 97 bioavailability studies. Am J Clin Nutr.. 81. 230S-242S
  • Gugler, R, Leschik, M, Dengler, HJ. (1975). Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol.. 9. 229-234
  • Day, AJ, Mellon, F, Barron, D, Sarrazin, G, Morgan, MR, Williamson, G. (2001). Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res.. 35. 941-952
  • Williamson, G, Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans: II. Review of 93 intervention studies. Am J Clin Nutr.. 81. 243S-255S
  • Kroon, PA, Clifford, MN, Crozier, A, Day, AJ, Donovan, JL, Manach, C. (2004). How should we assess the effects of exposure to dietary polyphenols in vitro?. Am J Clin Nutr.. 80. 15-21
  • Perez-Vizcaino, F, Ibarra, M, Cogolludo, AL, Duarte, J, Zaragoza-Arnaez, F, Moreno, L. (2002). Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J Pharmacol Exp Ther.. 302. 66-72
  • Lodi, F, Jimenez, R, Moreno, L, Kroon, PA, Needs, PW, Hughes, DA. (2009). Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis. 204. 34-39
  • Bieger, J, Cermak, R, Blank, R, de Boer, VC, Hollman, PC, Kamphues, J. (2008). Tissue distribution of quercetin in pigs after long-term dietary supplementation. J Nutr.. 138. 1417-1420
  • O'Leary, KA, Day, AJ, Needs, PW, Sly, WS, O'Brien, NM, Williamson, G. (2001). Flavonoid glucuronides are substrates for human liver beta-glucuronidase. FEBS Lett.. 503. 103-106
  • Shimoi, K, Saka, N, Nozawa, R, Sato, M, Amano, I, Nakayama, T. (2001). Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos.. 29. 1521-1524
  • Lee-Hilz, YY, Stolaki, M, van Berkel, WJ, Aarts, JM, Rietjens, IM. (2008). Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on their deconjugation. Food Chem Toxicol.. 46. 2128-2134
  • Kawai, Y, Nishikawa, T, Shiba, Y, Saito, S, Murota, K, Shibata, N. (2008). Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem.. 283. 9424-9434
  • Terao, J, Murota, K, Kawai, Y. (2011). Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct.. 2. 11-17
  • Menendez, C, Dueñas, M, Galindo, P, Gonzalez-Manzano, S, Jimenez, R, Moreno, L. (2011). Vascular deconjugation of quercetin glucuronide: The flavonoid paradox revealed?. Mol Nutr Food Res.. 55. 1780-1790
  • Jimenez, R, Lopez-Sepulveda, R, Romero, M, Toral, M, Cogolludo, A, Perez-Vizcaino, F. (2015). Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct.. 6. 409-414
  • Galindo, P, Rodriguez-Gómez, I, González-Manzano, S, Dueñas, M, Jiménez, R, Menéndez, C. (2012). Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS One. 7.
  • van Duynhoven, J, Vaughan, EE, Jacobs, DM, Kemperman, RA, van Velzen, EJ, Gross, G. (2011). Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A. 108. 4531-4538
  • Boesch-Saadatmandi, C, Niering, J, Minihane, AM, Wiswedel, I, Gardeman, A, Wolffram, S. (2010). Impact of apolipoprotein E genotype and dietary quercetin on paraoxonase 1 status in apoE3 and apoE4 transgenic mice. Atherosclerosis. 211. 110-113
  • Bartholome, R, Haenen, G, Hollman, CH, Bast, A, Dagnelie, PC, Roos, D. (2010). Deconjugation kinetics of glucuronidated phase II flavonoid metabolites by beta-glucuronidase from neutrophils. Drug Metab Pharmacokinet.. 25. 379-387