Modelos hidrodinámicos y de transporte de sedimentos

  1. Losada, Iñigo J.
  2. Medina, Raúl
  3. Losada, Miguel Ángel
  4. Vidal, César
Revista:
Ingeniería del agua

ISSN: 1134-2196

Año de publicación: 1995

Volumen: 2

Número: 5

Páginas: 99-108

Tipo: Artículo

DOI: 10.4995/IA.1995.2667 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ingeniería del agua

Resumen

Uno de los fines más importantes de la Ingeniería de Costas es la predicción de la evolución de la línea de costa con o sin la presencia de estructuras costeras. Sin embargo, la construcción de un modelo de predicción semejante precisa del conocimiento de la interacción entre el oleaje y la batimetría, así como de los mecanismos que inducen el transporte de sedimentos fuera y en el interior de la zona de rompientes. El modelo ideal debería estar constituido por diversos elementos.

Referencias bibliográficas

  • Bakker, W.T., 1968. The Dynamics of a Coast with a Groyne System. Proc. 11th Intl. Coastal Engineering Conference, ASCE. pp. 429-517. https://doi.org/10.9753/icce.v11.31
  • Basco, D.R., 1983. Surfzone Currents. Coastal Engineering, ELSEVIER, 7, pp. 331-357. https://doi.org/10.1016/0378-3839(83)90003-0
  • Battjes, J.A., Janssen, J.P.F.M., 1978. Energy Loss and Set-up due to Breaking of Random Waves. Proc. 16th Intl. Coastal Engineering Conference, ASCE. https://doi.org/10.9753/icce.v16.32
  • Berkhoff, J.C.W., 1972. Computation of Combined Refraction-diffraction. Proc. 13th Intl. Coastal Engineering Conference, ASCE, Vancouver, pp. 471-490. https://doi.org/10.9753/icce.v13.23
  • Berkhoff, J.C.W., Booij, N.C., Radder, A.C., 1982. Verification of Numerical Wave Propagation Models for simple Harmonic Linear Water Waves. Coastal Engineering Conference, ELSEVIER, 6, pp. 255-279. https://doi.org/10.1016/0378-3839(82)90022-9
  • Bettess, P., Zienkiewicz, O.C., 1977. Diffraction and Refraction of Surface Waves Using Finite and Infinite Elements. Intl. Journal Num. Methods in Engineering, 2, pp. 1221-1290. https://doi.org/10.1002/nme.1620110808
  • Briand, M.H.G., Kamphuis, J.W., 1990. A Micro Computer based quasi 3-D Sediment Transport Model. Proc. 22th Intl. Coastal Engineering Conference, ASCE. pp. 2159-2172.
  • Daily, W.R., Dean, R.G., Dalrymple, R.A., 1985. Wave Height Variations Across Beaches of Arbitrary Profile. J. Geophysical Research, 90, C6, pp. 11917-11927. https://doi.org/10.1029/JC090iC06p11917
  • Dalrymple, R.A., 1988. Model for Refraction of Water Waves. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 114, 4, pp. 423-435. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:4(423)
  • Dalrymple, R.A., 1991. REFRACT: A Refraction Program for Water Waves. Center for Applied Coatal Research. Technical Report, 91-09, University of Delaware.
  • Dean, R.G., Dalrymple, R.A., 1984.Water Wave Mechanics for Engineers and Scientists, Prentice-Hall.
  • de Vriend, H.J., 1987. Two- and three-dimensional mathematical modelling of coastal morphology. Delft Hydraulics Communications, No. 377.
  • de Vriend, H.J., 1992. Mathematical Modelling of 3D coastal Morphology. Design and Reliability of Coastal Structures, Short Course ICCE’92. pp. 259-285.
  • de Vriend, H.J., Ribberink, J.S., 1988 Proc. 21th Intl. Coastal Engineering Conference, ASCE. pp. 1689-1703.
  • Ebersole, B.A., 1985. Refraction-Diffraction Model for Linear Water Waves. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 111, pp. 939-953. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:6(939)
  • Freilich, M.H., Guza, R.T., 1984. Nonlinear Effects on Shoaling Surface Gravity Waves. Trans. Royal Society London, A, 31, pp. 1-41. https://doi.org/10.1098/rsta.1984.0019
  • Freilich, M.H., Guza, R.T., Elgar, S.L., 1990. Observations of Nonlinear Effects in Directional Spectra of Shoaling Gravity Waves. J. Geophysical Research, 95, C6, pp. 9645-9656. https://doi.org/10.1029/JC095iC06p09645
  • García, V., 1994. Propagación del Oleaje: Aproximación parabólica de la Ecuación para Pendientes Suaves. Tesina de Especialidad. E.T.S.I.C.C.Y.P. Universidad Pol. de Cataluña. 122 pp.
  • G.I.O.C. U.C., 199. Manual del Modelo MSP. E.T.S.I.C.C.C.Y.P. Universidad de Cantabria. 250 pp.
  • G.I.O.C. U.C., 199. Manual del Modelo de Corrientes en Playas (COPLA). E.T.S.I.C.C.C.Y.P. Universidad de Cantabria. 50 pp.
  • Grassa, J.M., 1992. Modelos parabólicos de Propagación de Oleaje. Cuadernos de Investigación. CEDEX. MOPT.66 pp.
  • Holthuijsen, L, Booij, N., 1986. Grid Model for Shallow Water Waves. Proc. 20th Intl. Coastal Eng. Conference, ASCE, Taipei, pp. 247-260. https://doi.org/10.9753/icce.v20.20
  • Houston, J.R., 1981. Combined Refraction-Diffraction of Short Waves Using the Finite Element Method. Applied Ocean Research, 3, pp. 163-170. https://doi.org/10.1016/0141-1187(81)90058-4
  • Horikawa, K, Kuo, C.T., 1966. A Study of Wave Transformation Inside Surf Zone. Proc. 10th Intl. Coastal Engineering Conference, ASCE. https://doi.org/10.9753/icce.v10.14
  • Kamphuis, J.W., 1991a. Alongshore Sediment Transport Rate. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 117, pp. 624-640. https://doi.org/10.1061/(ASCE)0733-950X(1991)117:6(624)
  • Katapodi, I., Ribberink, K., 1990. A Quasi-3D Model for suspended Sediment Transport by Currents and Waves. Proc. 22th Intl. Coastal Engineering Conference, ASCE. pp. 2131-2144.
  • Kirby, J.T., 1986. Rational Approximations in thc Parabolic Equation Method for Water Waves. Coastal Engineering, ELSEVIER, 10, pp. 355-378. https://doi.org/10.1016/0378-3839(86)90021-9
  • Kirby, J.T., Dalrymple, R.A., 1983. A Parabolic Equation for the Combinad Refraction-Diffraction of Stokes Waves by mildly varying Topography. J. of Fluid Mechanics, 136, pp. 453-466. https://doi.org/10.1017/S0022112083002232
  • Kraus, N.C., Isobe, M., Igarashi, H., Sasaki, T.O., Horikawa, K., 1982. Field Experiments on longshore Sand Transport in the Surf Zone. Proc. 18 th Intl. Coastal Engineering Conference, ASCE. pp. 969-988. https://doi.org/10.9753/icce.v18.61
  • Larson, M., Hanson, H., Kraus, N.C., 1987. Analytical Solutions of the one-line Model of Shoreline Change. CERC Report 87-15. U.S. Corps of Engineers. Vicksburg. 72 pp.
  • Le Méhaute, B., Soldate, M., 1978. Mathematical Modelling of Shoreline Evolution. Proc. 16 th Intl. Coastal Engineering Conference, ASCE. pp. 1163-1179. https://doi.org/10.9753/icce.v16.67
  • Le Méhaute, B., Wang, J.D., 1982. Wave Spectrum Changes on Sloped Beach. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 108, pp. 33-47.
  • Liu, P.L.-F., Yoon, S.B., Kirby, J.T., 1985. Nonlinear Refraction-Diffraction of Waves in Shallow Water. J. Fluid Mechanics, 153, pp. 184-201. https://doi.org/10.1017/S0022112085001203
  • Munk, W.H., Arthur, R.S., 1952. Wave Intensity along a Refracted Ray in Gravity Waves. National Br. Standards Circ., 521. Washington, D.C.
  • Noda, E.K., 1974. Wave-induced Nearshore Circulation. J. Geophysical Research, 79, 27, pp. 4097-4106. https://doi.org/10.1029/JC079i027p04097
  • Penney, W.G., Price, A.T., 1952. The Diffraction Theory of Sea Waves and the Shelter Afforded by Breakwaters. Philos. Trans. Roy. Soe., A, 224(882), pp. 236-253. https://doi.org/10.1098/rsta.1952.0003
  • Peregrine, D.H., 1967. Long Waves on a Beach. J. of Fluid Mechanics, 27, pp. 815-827. https://doi.org/10.1017/S0022112067002605
  • Perlin, M., Dean, R.G., 1983. An efficient numerical Algorithm for Wave Refraction/ShoalingProblems. Proc. Coastal Structures, 83, ASCE, Arlington, pp. 988-1010.
  • Perlin, M., Dean, R.G., 1985. 3-D Model of bathymetric Response to Structures. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 111, 2, pp. 153-170. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(153)
  • Radder, A.C., 1979. On the Parabolic Equation Method for Water Wave Propagation. J. of Fluid Mechanics, 95, pp. 159-176. https://doi.org/10.1017/S0022112079001397
  • Rivero, F., Rodriguez, M., Sánchez-Arcilla, A., 1993. Propagación del Oleaje sobre Fondos variables en Presencia de Corrientes. II Jornadas Españolas de Ingeniería de Costas, pp. 187-204.
  • Sakai, T. Koseki, M., Iwagaki, Y., 1983. Irregular Wave Diffraction due to Current. J. Hydraulic Engineering, ASCE, 109, 9, pp. 1203-1215. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:9(1203)
  • Sánchez-Arcilla, A., Collado, F., Lemos, C., Rivero, F., 1990. Another Quasi-3D Model for Surfzone Flows. Proc. 22 th Intl. Coastal Engineering Conference, ASCE. pp. 316-329.
  • Stive, M.J.F., Battjes, J.A., 1984. A Model for Offshore Sediment Transport. Proc. 19th Intl. Coastal Engineering Conference, ASCE. pp. 1420-1436. https://doi.org/10.9753/icce.v19.97
  • Thornton, E.B., Guza, R.T., 1983. Transformation of Wave Height Distribution. J. Geophysical Research, 88, C10, pp. 5925-5938. https://doi.org/10.1029/JC088iC10p05925
  • U.S. Army Corps of Engineers, 1984. Shore Protection Manual Coastal Engineering Research Center, Washington, D.C. 2 Vol.