Retos, profesores y alumnos con talento matemático

  1. CASTRO, Enrique 1
  2. RUIZ-HIDALGO, Juan F. 1
  3. CASTRO-RODRÍGUEZ, Elena 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Aula: Revista de Pedagogía de la Universidad de Salamanca

ISSN: 0214-3402

Año de publicación: 2015

Título del ejemplar: Los talentos en la educación

Número: 21

Páginas: 85-104

Tipo: Artículo

DOI: 10.14201/AULA20152185104 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Aula: Revista de Pedagogía de la Universidad de Salamanca

Objetivos de desarrollo sostenible

Resumen

En este artículo reflexionamos sobre la naturaleza de los retos y de su importante papel en la atención de los estudiantes con talento matemático e incidimos en las posibles funciones que puede desempeñar el profesor. Destacamos la necesidad de que el profesor de matemáticas tenga un conocimiento especializado sobre la formulación de retos matemáticos apropiados para la identificación y el estímulo de los estudiantes con talento matemático en el aula. Ejemplificamos estas ideas con retos específicos, mostrando estrategias que puede utilizar el profesor para formular retos matemáticos en torno a un contenido específico y cómo organizar su secuencia didáctica en el aula.

Referencias bibliográficas

  • APPLEBAUM, M. y LEIKIN, R. (2007) Teachers’ conceptions of mathematical challenge in school mathematics. En J. W. Woo, H. C. Lew, K. S. Park y D. Y. Seo (eds.) Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, vol. 2 (pp. 9-16). Seoul, Korea: pme.
  • ASSOULINE, S. G. y LUPKOWSKI-SHOPLIK, A. (2005) Developing math talent: A guide for educating gifted and advanced learners in math. Waco, tx: Prufrock Press.
  • BARBEAU, E. J. y TAYLOR, P. J. (eds.) (2009) Challenging Mathematics In and Beyond the Classroom. The 16th icmi Study. New York: Springer.
  • BENAVIDES, M. (2008) Caracterización de sujetos con talento en resolución de problemas de estructura multiplicativa. Tesis doctoral. Universidad de Granada. Granada.
  • CASTRO, E. (1995) Niveles de comprensión en problemas verbales de comparación multiplicativa. Granada: Comares.
  • CASTRO, E.; BENAVIDES, M. y SEGOVIA, I. (2006) Cuestionario para caracterizar a niños con talento en resolución de problemas de estructura multiplicativa. Faisca. Revista de Altas Capacidades, 13, 4-22.
  • CHARLES, R. y LESTER, F. (1982) Teaching Problem Solving. What, Why y How. Palo Alto, ca: Dale Seymour Publications.
  • COLLINS, A.; BROWN, J. S. y NEWMAN, S. E. (1989) Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. En L. B. Resnick (ed.) Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453-494). Hillsdale, nj: Erlbaum.
  • DEPARTMENT FOR EDUCATION AND EMPLOYMENT (2000) Mathematical challenges for able pupils. London (El autor).
  • DOYLE, W. (1988) Work in mathematics classes: The context of students’ thinking during instruction. Educational Psychologist, 23 (2), 167-180.
  • http://dx.doi.org/10.1207/s15326985ep2302_6
  • ELLERTON, N. (1986) Children’s Made-Up Mathematics Problems A New Perspective on Talented Mathematicians. Educational Studies in Mathematics, 17, 261-271. http://dx.doi.org/10.1007/BF00305073
  • FELDHUSEN, J. F. y KROLL, M. D. (1991) Boredom or challenge for the academically talented in school. Gifted Education International, 7, 80-81.
  • http://dx.doi.org/10.1177/026142949100700207
  • FREIMAN, V. (2006) Problems to discover and to boost mathematical talent in early grades: a challenging situations approach. The Montana Mathematics Enthusiast, 3, 51-75.
  • GREENES, C. (1981) Identifying the gifted student in mathematics. Aritmetic Teacher, 28 (8), 4-17.
  • GUZMÁN, M. (2002a) Una descripción del proyecto «Detección y estímulo del talento matemático precoz en la Comunidad de Madrid». Bordón. Revista de Pedagogía, 54, 255-268.
  • GUZMÁN, M. (2002b) Un programa para detectar y estimular el talento matemático precoz en la Comunidad de Madrid. Gaceta de la Real Sociedad Matemática Española, 5 (1), 131-144.
  • HENNINGSEN, M. y STEIN, M. K. (1997) Mathematical tasks and student cognition: classroombased factors that supports and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28 (5), 524-549.
  • http://dx.doi.org/10.2307/749690
  • HIEBERT, J.; CARPENTER, T.; FENNEMA, E.; FUSON, K.; WEARNE, D.; MURRAY, H.; OLIVIER, A. y HUMAN, P. (1997) Making Sense. Portsmouth, nh: Heinemann.
  • JOHNSON, D. T. (1994) Mathematics curriculum for the gifted. En J. VanTassel-Baska (ed.) Comprehensive curriculum for gifted learners. Boston: Allyn and Bacon.
  • KRUTETSKII, V. A. (1969) An analysis of the individual structure of mathematical abilities in schoolchildren. En J. Kilpatrick e I. Wirszup (eds.) Soviet Studies in the Psychology of Learning and Teaching Mathematics, vol. ii (pp. 59-104). The Structure of Mathematical Abilities. Chicago: University of Chicago Press.
  • LAMPERT, M. (1990) When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27 (1), 29-63.
  • http://dx.doi.org/10.3102/00028312027001029
  • LEIKIN, R. (2004) Towards High Quality Geometrical Tasks: Reformulation of a Proof Problem. En M. J. Hoines y A. B. Fuglestad (eds.) Proceedings of the 28th International Conference for the Psychology of Mathematics Education, vol. 3 (pp. 209-216).
  • MILLER, R. C. (1990) Discovering Mathematical Talent. eric Digest #E482.
  • Niederer, K. e Irwin, K. (2001) Using problem solving to identify mathematically gifted Students. En M. van den Heuvel-Panhuizen (ed.) Proceeding of the 25 th Conference of the International Group for the Psychology of Mathematics Education, vol. 3 (pp. 431-438). Utrecht.
  • NIEDERER, K.; IRWIN, R. C.; IRWIN, K. C. y REILLY, I. L. (2003) Identification of Mathematically Gifted Children in New Zealand. High Ability Studies, 14 (1), 71-84.
  • http://dx.doi.org/10.1080/13598130304088
  • PASARÍN, M. J.; FEIJOO, M.; DÍAZ, O. y RODRÍGUEZ, L. (2004) Evaluación del talento matemático en educación secundaria. Faisca. Revista de Altas Capacidades, 11, 88-103.
  • POLYA, G. (1973). Cómo plantear y resolver problemas. México: Trillas.
  • POWELL, A. B.; BORGE, I. C.; FIORITI, G. I.; KONDRATIEVA, M.; KOUBLANOVA, E. y SUKTHANKAR, N. (2009) Challenging tasks and mathematics learning. En Challenging Mathematics In and Beyond the Classroom (pp. 133-170). Springer us.
  • SCHOENFELD, A. H. (1985) Mathematical problem solving. Orlando, Fl: Academic Press.
  • SHEFFIELD, L. J. (ed.) (1999) Developing mathematically promising students. Reston, va: National Council of Teachers of Mathematics.
  • SHEFFIELD, L. J. (2003) Extending the Challenge in Mathematics: Developing Mathematical Promise in K-8 Students. Thousand Oaks, ca: Corwin Press.
  • SPAN, P. y OVERTOOM-CORSMIT, R. (1986) Information Processing by Intellectually Gifted Pupils Solving Mathematical Problems. Educational Studies in Mathematics, 17, 273-295.
  • http://dx.doi.org/10.1007/BF00305074
  • WATTERS, J. J. y DIEZMANN, C. M. (2000) Catering for mathematically gifted elementary students: Learning from challenging tasks. Gifted Child Today, 23 (4), 14-19.